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ABSTRACT

KEYWORDS: Turbulent reacting flows; Combustion noise; Castlon instabil-
ity; Intermittency; Multifractals; Homoclinic orbits; Bme dynam-

ics; Bluff-body stabilized combustor.

Unsteady combustion in a confined, compressible flow-field lead to the sponta-
neous excitation of self-sustained periodic oscillatjqgmevided the heat release rate
fluctuations are in phase with the pressure fluctuationsléngie confinement. These
periodic oscillations termed ‘combustion instability’ ‘tihermoacoustic instability’ re-
main a major cause of concern in industrial applicationsieerse as household burn-
ers which are used for cooking and heating, gas turbine engised for propulsion
and power generation, as well as rocket engines used foe spgioration and de-
fense applications. A description of the mechanism undeglyhe inception of such
self-sustained oscillations in combustors remain diffiewen after decades of active
research as the dynamics involves a complex nonlineapilateamongst the hydrody-

namic, acoustic and combustion processes.

The present thesis aims to identify the route through wharhtwstion instability
is established from stable operating conditions, when tigerlying flow field inside
the combustion chamber is turbulent. The work focuses odyhamic transitions ob-
served in a bluff-body stabilized backward facing step costdr, when the air flow rate
(Reynolds number) is gradually increased keeping the foel fate fixed. The operat-
ing conditions were varied from near unity equivalenceosatowards the lean blowout
limit. As a first step, the dynamics of unsteady pressuredhtains acquired during
stable conditions is characterized. These fluctuationsielwdre termed as ‘combus-
tion noise’ in the literature—are often modelled as a stetihgrocess. Our results
indicate that combustion noise is in fact deterministicashaith weak correlations (fi-
nite memory) and does not display properties one would exXpan a typical random
process. Increasing the Reynolds number towards combusstability leads to a loss

of this chaotic behaviour.



It was observed that combustion instability is presagedrbingermittent regime
characterized by bursts of high-amplitude periodic ogtdhs that appear in a near
random manner from a background of low-amplitude chaotitdlations. Interaction
amongst the hydrodynamic and the acoustic subsystemss@stihe formation of ho-
moclinic orbits which can be identified in the reconstrugtbdse space of the pressure
time series. Such orbits result in occasional excursionketlynamics away from the
low-amplitude regimes, leading to the formation of intetemt bursts in measurements.
Since combustion instability is an undesirable state inlmastors, early warning signals

to an impending instability can be obtained by quantifyingse intermittent states.

High speed images at instability reveal periodic vortexrfation at the backward
facing step and impingement on the bluff-body and the spetwf the flame inten-
sity reveals a strong peak at the subharmonic close to thesacanode. Based on
these experimental insights, a mechanism was proposedhwkiessitates that when
the underlying flow-field to be turbulent, the transition timbustion instability must
happen via the intermittency route. A phenomenological@hcdintroduced based on
the mechanism that describes the onset of combustion ilistals a lock-in between
hydrodynamics and the acoustic field. The model qualitBtreproduces the intermit-
tent behaviour observed in experiments and also providdég warning signals to an

impending transition.

Due to the inherent complexity of the dynamics, a fractatdption was sought to
understand the scaling of pressure fluctuations obsenmdtprcombustion instability.
It was found that these irregular pressure fluctuations arenable to a multifractal
description; in other words, fluctuations of different aijales grow at different rates
within a short time range. The transition to combustionabsity results in a collapse
of the number of relevant time scales in the problem, whieldseo a loss of multifrac-
tality. This reduction in complexity can be quantified to astyet another early warning

signal to combustion instability.

Intermittent burst oscillations were also observed as Blelgnumber is increased
beyond regimes of combustion instability, as operatingdd@ns near lean blowout.
High speed imaging of the flame in this intermittent regimeeds an aperiodic detach-
ment and reattachment of the flame from the lip of the blutiypoTrhese intermittent

regimes are thus seen to act a precursor to lean blowout &s wel



Such an intermittent regime was also observed in systenm®uticombustion. In-
creasing the Reynolds number in a system comprising a dumtrtated by an orifice
results in the onset of self-sustained pipe tone oscitliat{@vhistling). It was observed
that the onset of whistling in such systems is also precegiedrbgime of intermittent
burst oscillations, just as in combustors, provided theditaon to whistling happens at
high Reynolds numbers. When whistling is established, thentary condition at the
orifice is modified, which can be captured using a 1D lineauatto model. The change
in boundary condition can also be used to explain the memjfimprtices downstream

of the orifice as has been observed previously.

These observations reinforce the idea that intermittea@y universal feature ob-
served in systems with turbulent flow-sound interactiompto a regime of periodic
oscillations. Further, the nature of the problem requihed the effects of flow turbu-
lence be incorporated appropriately in the models and rsvtigmored as background

perturbations to the underlying dynamics, as is currertgnodone.
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CHAPTER 1

Introduction

Combustion instability refers to the self-sustained, daagnplitude oscillations of the
unsteady pressure and velocity components in combustaasisés primarily through
an interaction of the acoustic waves in a confined space Wihuhsteady rate of heat
release through combustion. The pressure waves are amfifiluctuations in heat
release rate. These wave in turn modulate the rate of heatsehfter reflection from

the walls and boundaries of the combustion chamber.

When the rate of change of heat release by the flame respomdssge with the
unsteady pressure pulsations, a positive feedback loggiableshed (Rayleigh, 1878),
with the flame acting as an acoustic actuator and the conalousiamber as an acous-
tic resonator. The positive feedback amplifies an initiatysbation as the addition and
abstraction of heat occur during the compression and r&refephases of the pressure
oscillation, respectively. The fluctuations can thus grapomentially until nonlinearity
takes over, resulting in a saturation of pressure amplitutien the total energy losses
from the chamber balances the energy input through condvusredicting and con-
trolling the onset of such oscillations, therefore, reguan intimate understanding of
the interaction between the the acoustic pressure fieldrangrbcesses that lead to a

fluctuating heat release.

Despite decades of active research, the appearance of sbarbinstability has
remained a serious problem in the design and developmeminabastors for rockets,
ramjets and gas turbines (McManetsal,, 1993). When pulsations start spontaneously
at an operating condition, the combustor is said to be lipesistable at that condition;
i.e., the combustor is prone to instability for arbitraiyall pressure disturbances that
may arise at that operating condition. By modelling the costbr as a series of network
elements with specified boundary conditions and perforraifigear stability analysis,
conditions of linear instability have been successfullyestigated for various design
configurations. In a network model, the analysis is perfarimehe frequency domain

wherein each element is described using a linear transfhetitn (Huber and Polifke,



200%,b). These transfer functions describe the variation of amopsessure and ve-
locity within the elements and also provide the necessannfary conditions across
the element interfaces. The stability of the combustor han be easily determined by

examining the eigenvalues of a matrix composed of its tearfahctions.

However, in many cases, a combustor that is linearly stedotebe ‘triggered’ into
pulsating operation by introducing a pressure disturbanéieite amplitude. Such dis-
turbances may arise, for instance, during spark plug igmibr small explosions in the
combustion chamber. In such a scenario, the dynamics insimdustors is stable only
if the amplitude of initial disturbances falls below a cartthreshold value, which in
general depends on the geometry of the combustor, fuel csitiggoand the flow rates
inside the chamber. A qualitative change in the behaviotin@tombustor from stable
operation to unstable operation is termed as a bifurcafidransition to periodic oscil-
lations due to a change in the initial disturbances is charatic of systems that exhibit
a subcritical Hopf bifurcation (Strogatz, 2001). For sysseexhibiting subcritical Hopf
bifurcations, there exists a range of operating conditions control parameter (like
the air flow rate) for which two stable solutions are possiblie asymptotic state; the
solution which is manifested depends on the magnitude ahihial perturbation. The
techniques of classical linear stability does not inclutke éffects of initial conditions

in the analysis and hence cannot explain triggering.

Although much progress has been made over the last 50 yeasséssing the sta-
bility margins of combustors, it has mostly been in the freumik of classical linear
stability analysis. A comprehensive prediction of the abads under which combus-
tion instability is established remains a difficult task,igéhhas not yet been mastered.
In particular, prediction of the amplitude or the frequemdéyoscillations at the onset
of instability remains a key challenge as surprisinglydits known—even in a qualita-
tive sense—about the key parameters controlling nonlifi@are dynamics (Zinn and
Lieuwen, 2005). Therefore, to describe the onset of conduststability, estimate the
amplitude and frequency of the periodic oscillations andéscribe features such as

triggering, a nonlinear theory of combustion instabilgyiecessary.



1.1 The role of nonlinearities

In the 70’s and 80’s, much work was focused on identifyingrble of nonlinear gas
dynamic processes in establishing combustion instability work was primarily mo-
tivated by instabilities in both solid and liquid rocket roct where the resultant am-
plitude of pressure oscillations can reach a significanp@rion of the mean pressure
value; typical values correspond t6/p ~ 20 — 50%. The nonlinearity of acous-
tic waves in the combustion chamber of a rocket motor werdistiuby Culick using
one-dimensional wave equations (Culick, 1970, 1976a,88)19The response of com-
bustion to the pressure fluctuations were considered linBae work paved the first
steps in tackling the general problem of analyzing the mear growth and saturation
of the amplitude of acoustic waves in a combustion chambes.limit-cycle amplitude

was determined numerically by solving a set of coupled maali wave equations.

In contrast to the model proposed by Culick, Sterling (8tgr11993) reasoned that
the only nonlinearities of significance in a combustion chamoriginated from the
combustion process itself and that the acoustic dynamiaslde treated as essentially
linear. His idea waamotivated by experimental results from a laboratory costbu
that demonstrated that the heat-addition and fluctuatioesiaminated by the Rayleigh
mechanism.He concluded that in order to adequately represent the flgmandics, a
nonlinear expression for heat release rate is necessangs lalso been subsequently
shown that the combustion response needs to be nonlinearabl®é to trigger sponta-
neous pulsations in a combustor (Culick, 1994; Wiakieal., 1996). It should however
be mentioned that the nonlinear models adopted in theseestack ‘ad hoc’, and are

not derived from first principles.

Nonlinear gas dynamical processes are even less signiiiicarémixed gas turbine
combustors, where reported pressure amplitudes are Hypamaund1 — 5% of the
mean pressure value (Lieuwen, 2002; Dowling, 1997; Peracaid Proscia, 1999).
Therefore, the acoustic (i.e., gas dynamic) processesmamthe linear regime, even
during combustion instability. These studies also hidftlitne fact that the dominant
nonlinear contribution arises from the relationship betw#ow and heat release oscil-
lations, which in the frequency domain is represented asweftaansfer function or a
flame describing function. Since the typical flow Mach nunskara premix combus-

tor are low, the amplitude of pressure fluctuations tend tguiee small compared to
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the mean pressure, which allows a linear analysis of thesticgqorocesses, even if the

combustion response turns out to be nonlinear.

Later studies have confirmed that the heat release respopsemixed combustors
is nonlinear (Hosseini and Lawn, 2005; Lieuwen, 2004; Pra®tand Lieuwen, 2004,
2005). Typically, one needs to worry about nonlinear effectly when the amplitude of
the velocity fluctuations is comparable to the mean flow vigfo@he response of bluff-
body stabilized lean premixed flames to acoustic forcingiwasstigated by Balachan-
dran (2005) to understand the combustion response durmgdycle operation. They
found that that nonlinearity in heat release response besamngnificant only when the
amplitude of inlet velocity fluctuations reaches arou#th of the mean value, a value
that depends on the forcing frequency and the equivaletice Tgagiet al.(2007) have
shown that the combustion response of non-premixed flansesb&comes nonlinear,

even for very low amplitudes of acoustic excitation.

For the type of flow-fields that exist in a combustor, hydraayic instabilities play
an important role in the determining its overall stabili#y.large class of combustion
instabilities are driven by the interaction of vorticesiwitames and the acoustic field.
Such interactions also—to a great extent—dictate the tstreiof turbulent flames and
the corresponding rates of reaction inside the combustiamber (Renardt al., 2000).

These interactions are inevitably, highly nonlinear.

1.2 Dynamical systems theory

A major share of the literature on the nonlinear analysisarhlgustion instabilities
has been restricted to obtaining nonlinear describingtfans either experimentally or
theoretically (Noirayet al., 2008). The procedure involves decoupling the flame from
the acoustic field, and forcing the flame over all the possduhges of frequencies and
amplitudes. The nonlinear flame describing function (orrbalinear flame transfer
function) thus obtained is a function of both the amplitudd &requency which is then
substituted in the wave equation (transformed to the frequelomain) to model the
acoustic driving. The dispersion relation (relation castimgy the frequency and the
wavenumber) is then solved for its eigenvalues at diffelevetls of acoustic velocity

amplitude. These eigenvalues indicate the growth or det#yei system at any ampli-



tude. The point of zero growth or decay rate is interpretedllamit cycle. The stability

of a limit cycle is determined by the change in sign in the glomate. A change in sign
of the growth rate to a negative value from a positive valuth wicreasing amplitude
indicates that the limit cycle is stable. This is becauséupeations with an amplitude
smaller than the limit cycle amplitude grow with time, whaseperturbations with am-
plitude larger than that at limit cycle decay to the limit iyamplitude. Conversely, a
change in the growth rate from negative to positive withéasing amplitude indicates

that the limit cycle is unstable.

Although a large body of recent literature exists on thigdpp is not established
if the describing function technique can make accurateigtieds. First, at its core,
the technique still relies on a linear analysis using eigkres to infer stability. More
importantly, the dynamics of a forced system is differentirthat of a self-evolving
system especially as regards the phase of the resultintiatiscis (Pikovskyet al.,
2003) and the transient envelope of the growing oscillat{@&@urnley and Culick, 2000;
Culick, 2006). Recent studies have further shown that thkilgly margins obtained

using describing functions do not match with numerical $atians (Kashinath, 2013).

Time evolution of a typical pressure measurement made firercombustor can
give information about its stability and the nature of theuldng asymptotic state.
However, this information is highly dependent on the sysparameters, operating
conditions and often times the type of initial conditiongibvels of flow noise, ignition
of a spark plug or an explosion) that exists inside the contalouslence, trying to assess
the stability of a combustor by following the evolution imi of pressure oscillations
individually for all the possible ranges of parameter valaad initial conditions is
not only expensive, but also impractical. Tools from dyneahsystems theory can
provide a systematic and efficient framework to investidgedth the linear (Trefethen
and Embree, 2005) and nonlinear (Burnley, 1996) behavibtlreosystem.

Jahnke and Culick (Jahnke and Culick, 1993) discussed tbeatipg conditions
under which stable limit cycles can exist in a system whichnisarly unstable, and
conditions under which bifurcations to a limit cycle can wccAlthough Culick and
co-workers have applied some concepts from dynamical mystheory such as con-
tinuation methods (Burnley, 1996; Ananthkrishretral., 2005), they have not posed

the problem of combustion instability in the framework ofhdynical systems theory.



The technique saw its revival in recent years wherein thetogsd triggering of com-
bustion instability was successfully investigated in a benof scenarios by Sujith and
coworkers (Balasubramanian and Suijith, 2Z&08Mariapparet al, 2010, May 17-21,
2010; Mariappan and Sujith, 2010; Subramanian, 2011)

1.3 Secondary bifurcations

Pressure oscillations more complex than a limit cycle hdse been reported previ-
ously in the context of combustion instability, by a few aarth Jahnke and Culick
(1994) reported the possibility of quasiperiodic osaias (oscillations characterized
by two incommensurate dominant frequencies and their pieft) using numerical con-
tinuation in their model of a solid rocket motor. Using a nuita bifurcation analy-

sis, Sterling (1993) and later Lei and Turan (2009) repottedpresence of chaotic
oscillations in models of premixed combustors. In expentagFicheraet al. (2001)

reported chaotic dynamics in a lean gas turbine combustoudin an analysis of heat

release rate fluctuations.

Kabiraj et al. (Kabiraj et al., 2010; Kabiraj and Sujith, 2011) performed bifurcation
analysis on pressure alddH* chemiluminescence time traces obtained from a simple
setup comprising of ducted, laminar premixed conical flatoésvestigate the features
of nonlinear thermoacoustic oscillations. It was obsethad as the bifurcation param-
eter is varied, the system undergoes a series of bifurcaléauing to characteristically
different states of nonlinear oscillations. Through theleation of techniques from
nonlinear time series analysis, these oscillations weegatierized as periodic, ape-
riodic or chaotic oscillations and subsequently, the reatirthe obtained bifurcations
was explained based on dynamical systems theory. Theintréoeings indicate that
limit cycle is just one of the possible end states in a condyugt thermoacoustic sys-
tem can undergo further bifurcations and attain statesachenized by quasiperiodicity,
period doubling, frequency locking and chaos. They havees both the Ruelle-
Takens and the frequency locking quasi-periodic route Bmshn their experiments.
Using high speed flame images acquired simultaneously halptessure time trace, it
was shown that the source of nonlinearity is in the intecadbietween the flame and the

acoustic field. These finding were later confirmed numesidallKashinath (2013).



1.4 Transition to combustion instability

The topics of combustion noise and combustion instabilashifigure fairly promi-
nently in the combustion literature (see for example ($ab978; McManust al.,
1993; Candel, 2002; Culick, 2006; Candalal, 2009; Schwarz and Janicka, 2009)
for extensive reviews on the topics). Lieuwen (2002) shotired inherent noise in
a thermoacoustic system can strongly affect the limit cjcéd under certain oper-
ating conditions may even be responsible for causing thebostor to become stable
under linearly stable conditions. He also investigatedctieracteristics of the fluctu-
ating pressure in an unstable combustor (Lieuwen, 2001randuded that the phase
drift characteristics are caused mainly by random prose§saise) and do not reflect
the underlying low-dimensional dynamics of the instahilithe statistical characteris-
tics of self-excited and noise driven pressure oscillatiora premixed combustor were
investigated by Lieuwen (2003). Using experimental datgshowed that the prob-
ability density function of the amplitude of these oscibiats transitions from Gaus-
sian to a Rayleigh-type distribution as the combustor mdk@s stable to unstable
operation. Lieuwen and Banaszuk (2005) considered thetedfebackground turbu-
lent fluctuations on the stability boundaries of a combusidrey show that additive
noise sources change only quantitative aspects of the csinrscillations. However,
parametric noise sources can affect the dynamics quaétatas well; in particular,
parametric noise can destabilize a system that is stableeimlbsence of these noise

sources.

However, most studies individually assess and contrabtestand unstable oper-
ation in combustors; studies that perform a smooth vanatiooperating parameters
starting from stable operation, leading towards instgbimain few. Thus, although
various physical mechanisms responsible for combustistalrility have been identi-
fied from earlier studies, the exact nature of transitiohempathways (routes) through
which instability is established is still not well understb Chakravarthy and cowork-
ers (Chakravarthet al., 200,a) performed a systematic variation of operating con-
ditions in bluff-body and backward-facing step combusforen stable to unstable op-
eration in a single set of continuous experiments. Theyrteddhat the non-lock-on
regime (where vortex shedding and duct acoustics do notdn¢ks characterized by

low-amplitude broadband noise generation. However, apbtiset of lock-on (between



vortex shedding and duct acoustics), the broad band norssraon gives way to the
excitation of high-amplitude discrete tones, which cowdditnit cycle oscillations. Re-
cently, Gotodeet al. (2011) have presented results from an experimental imeadsin

on the onset of thermoacoustic oscillations for decreasései fuel equivalence ratio.
The study employed novel methods of nonlinear time seriafysis and reported the

possibility of encountering low dimensional chaotic dstibns in combustors.

1.5 Interim summary and motivation

Unsteady combustion in a turbulent, convecting air-fueltorie tends to be noisy, even
more so when the heat release happens in a confined spacklgSt@¥8). These fluc-
tuations get amplified, when localized hydrodynamic pédtions augmented by the
heat release gets coupled to the acoustics of the chambgsuiting in self-sustained,
large amplitude pressure oscillations termed combustistability (McManuset al.,
1993). Such oscillations are often detrimental and caussekin billions of dollars of
annual revenue to the gas-turbine manufacturers. Fomiostahe repair and replace-
ment costs of hot section components due to combustionbilistalone exceed$1
billion annually and amounts to abdtd’% of the non-fuel costs of F-class gas turbines
(ed: T. C. Lieuwen and Yang, 2005). Designers of high-energpulsion and power
generation systems have hence resorted to conservatdiggtaargins as a preventive
measure. Setting such conservative and often experieasedlperational boundaries
results in increased levels &fO, emissions, which makes it difficult for gas-turbine
manufacturers to meet the stringent emission norms. Inysam devices such as
rockets and ramjets, one may not even have the flexibilitthobsing such a conserva-
tive, stable operational boundary. Despite decades ofeasearch, an understanding
of the mechanisms underlying this transition is far from ptete and finding robust
precursors that can forewarn impending combustion ingalbémains an important

practical problem.



1.6 Objective of the thesis

The objective of the present thesis is aimed at filling theitae as regards under-
standing, modelling and predicting the transition fromb&taoperation in combustors
to detrimental large amplitude combustion instabilityeTdutstanding questions raised

in the thesis may be summarized as follows:

1. Is combustion noise deterministic or stochastic?

2. How does low amplitude combustion noise transition tgdaamplitude combus-
tion instability?

3. Are there precursors to combustion instability?

1.6.1 Is combustion noise deterministic or stochastic?

The sources of combustion noise should be deterministitiegsderive from fluid dy-
namic and combustion processes: flame roll-up, vortex soatee or impingement,
fluid dilatation etc. (Coats, 1996), which are governed bygeaninistic set of equa-
tions. The use of the term ‘noise’ to describe the phenonteeegfore, creates a lot of
confusion. However, combustion noise is typically modi&ls an acoustic problem by
decoupling the hydrodynamics from the analysis. In a relagwCandelet al. (2009),
the authors clearly describe the formulation and its drakbas follows:'Studies of
combustion noise generally focus on situations where the dignamics can be con-
sidered to be independent of the radiated sound. It is intjfliassumed that the flow
dynamics is decoupled from the induced wave motion and tiredsemission from un-
stable flames is generally not considered when dealing withbzistion noiseAs they
further note, such a decoupling—although could ease caatipns—cannot be justi-
fied because practical systems are confined and boundaitexst sound towards the
reactive region. In summary, there exists a gap betweendlys i which combustion
noise is understood and theoretically modelled. Idemtdgywhether combustion noise

is deterministic or not, therefore, forms the first majoremtive of the thesis.



1.6.2 How does low amplitude combustion noise transition ttarge

amplitude combustion instability?

Combustion instability is also fundamentally treated asaaoustic problem and the
effects of turbulence are often times decoupled or negle@teeuwen, 2001, 2002,
2003; Noiray and Schuermans, 2013). The traditional amprd@ dealing with un-
steady measurements acquired from combustors is to trese theasurements as sig-
nals modulated by random perturbations. In models, turtmales introduced as an
external perturbation to the wave equation—as random snquinputs with the prop-
erties determined by the measured power spectrum ( Cénah (1994); Burnley and
Culick (2000); Lieuwen and Banaszuk (2005) to mention a fdw)}such a mean-field
description, the spectrum of dynamics under considerasioestricted to fixed points
and limit cycle oscillations, wherein the observed amplgumodulations in the mea-
sured data are described as the effects of background nolse strategy then is to
identify conditions of linear instability of the systemgthoundaries of which form the

margins of operability.

In turbulent combustors, the transition to self-sustawsallations from regimes of
stable operation can often be triggered due to the unstesslin the flow and combus-
tion. The distributions of the pressure measurements eajfiom combustors well
before conditions of instability have a characteristic €aan distribution (Lieuwen,
2002) suggestive of dynamics dictated by random processtgese regimes. How-
ever, bursts of pressure oscillations have been reportesk ¢b critical transition to
instability in liquid-propellant rocket engines (Clavet al., 1994). This erratic be-
haviour of pressure fluctuations was then incorporated agl@ahicative noise term in
the wave equation. For an unchoked fuel flow at the injectarswirl combustor, Hong
et al. (2008) reported the presence of pressure oscillationsalkernated between a
‘noisy period of 200 Hz fluctuation and a silent period withraadl pressure fluctua-
tion. Arndt et al. (2010) have observed a transition in the flame dynamics leztvae
state of stable combustion and self-excited oscillatiarespremixed gas turbine model
combustor using simultaneousH * chemiluminescence) H* PLIF and stereoscopic

measurements.

Predicting the amplitude or frequency of such triggeredlasions, or even the sta-

bility margins of combustors remain yet a challenge for aesleers in the field due to
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the complicated nature of the dynamics in combustors antdhgdlow, heat release
and the chamber acoustics (Zinn and Lieuwen, 2005). An sita®iding of the univer-
sal features of such transitions is limited and operatdenakely on heuristic measures
to prevent instability in fielded combustors. This limitatiis possibly a consequence of
the traditional ‘signal plus noise’ paradigm assumed irethalysis of such oscillations.
Since it is possible that the irregular fluctuations seen@asnrements are a direct re-
sult of the inherent complexity of turbulent combustion dsnics, it is unclear whether
a separation of the measurements into a signal and noisifggd. Understanding and

characterizing these transition states forms anothermoajective of the thesis.

1.6.3 Are there precursors to combustion instability?

From a more practical viewpoint, an important additionadsfion is to know whether
we can extract information about an impending instabifitgm the irregular states
observed prior to instability. The methodologies avagaipl the literature to prevent
large-amplitude oscillations in combustors mostly focasoppression of an incipient
instability, i.e., an instability that has already begurheToperational parameters are
modified based on a feedback signal acquired from the combirsorder to suppress
the incipient instability. At other times, modificationganade at the design stage based
on operational experience as a passive control strategysétet al. (1992) proposed
a technique for the active monitoring of combustion indightihrough modulations of
the pressure in the fuel line to suppress instabilities.s Tagquires external actuators
and/or modification of combustor configuration and knowked§frequency response
for an arbitrary input which limits its applicability to fiééd systems. Further, the
detection and control strategy requires the system to raesthbility before control
can take over. Hence, it would be more desirable to look fdy egarning signals to
an impending instability—through active monitoring—sattinstability is avoided in

combustors altogether.

Hobsoret al.(2000) analyzed combustor stability in terms of the bandwaod com-
bustor casing vibration and dynamic pressure measurernmeoatsnbustion chambers.
They observed that bandwidth which is indicative of the dmgpmlecreases towards
zero as the combustors approach their stability limits. ey, the presence of noise

in the combustion chamber could make the technique untemalpractice as it relies
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on a frequency domain analysis. Johnsoml. (2000) presented a technique to deter-
mine the stability margin using exhaust flow and fuel in@etrate modulation. The
technique is again limited in its scope as its applicabiidypractical combustors is

restricted by the need for acoustic drivers and pulsed fjetfors.

Lieuwen (2005) used the autocorrelation of the acquiredadigp characterize the
damping of the system and tracked the stability margin asleeating parameter value
at which the damping goes to zero. This method again has shdwhntage that the dy-
namics of the system prior to onset cannot adequately beidedaising linear data
processing techniques. The method, for instance, may nefféetive for combustors
exhibiting pulsed instabilities or a noise-induced tréosito instability. Also, the pres-
ence of multiple frequencies often seen in the frequencygtapa at the onset makes

the estimation of damping unclear.

The current solution adopted by combustion designers is thuncorporate suf-
ficient stability margin into the design to prevent instaigis from occurring even in
the worst possible scenario. Setting such conservatia&ss on operational regimes
leads to increased levels &fO, emissions making it more difficult to meet the de-
manding emission norms. It is desirable to have measuréptadict the instability
well before it happens because after the onset it may oftéadkate to take adequate
control action to save the combustor from wear and tear mueatfailure. There is thus
a need for precursors to an impending instability so that@ppate stability margins
may be devised to prevent the combustors from entering aneegf instability. Also,
in order that these early warning signals are sensitive &vaijmg conditions, such as
ambient temperature or fuel composition, online stabititgnitoring seems like the

optimal solution as a prevention methodology.

To resolve this question on precursors, we propose a fosmalvhich involves
searching for precursors to instability in data acquirednfturbulent combustion envi-
ronments, for conditions ranging from low amplitude contlarsnoise to high ampli-
tude combustion-driven oscillations. That the formalisrdata driven should be seen as
an advantage, because models or simulations often contaig imherent assumptions
themselves. Further, suitable models can be appropridé@iged once the underlying
mechanisms are well understood. The existence of precuvgould imply that it is

possible at least in principle, to reconstruct the dynaniias generates low amplitude
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combustion noise. Identifying precursors—at the verytleahould provide operators

of combustors with sufficient warning of impending oscibhas.

1.7 Identifying precursors to combustion instability: Pro-

posed methodology

Early warning signals to combustion instability may alsoofsained if measures can
be devised that quantify the irregular states in a measugedlsobserved in a combus-
tor prior to combustion instability. This requires thatgberregular states be persistent
features of the dynamics and not merely transients thatydéoan to low-amplitude
fluctuations or large-amplitude periodic oscillations. isTmvolves studying the dy-
namic characteristics of these states by identifying répgagatterns in such signals.
Also, since typical measures such as the amplitude of atiofis cannot serve as mea-
sures of bifurcation in such systems with varying ampligjdene must also seek to
identify suitable bifurcation measures to study interemtttransitions to instability in

turbulent combustors.

Yet another way to obtain early warning measures is to fdreesystem under con-
sideration with broadband noise (Wiesenfeld, 1985; Suwatkiga, 2005). The noise
gets selectively amplified at the instability frequencidsew the operating conditions
are sufficiently close to instability. The width of the pea&duency in the amplitude
spectrum then informs of the proximity of the system to ibsity (Wiesenfeld, 1985).
Further, it has also been observed that there is a reductitimei bistable regime for
systems exhibiting subcritical bifurcation, when the levaf noise used to force the
system are increased (Surovyatkina, 2005). However, itldhme noted that this pro-
cedure involves external stochastic forcing of a deterstimgsystem; our interests lie in
describing the deterministic features of the system itddtireover, the dynamics of a
forced system is different from that of a self-evolving gystespecially with regards to
the phase of the resulting oscillations (Pikovsial., 2003) and the transient envelope
of the growing oscillations (Burnley, 1996; Culick, 2008)so, introducing noise can
lead to noise-induced transitions (Jegadeesan and S2(it8), with dynamics differ-
ent from that of the original system. Furthermore, it is walbwn that a system chaotic

dynamics can result in signals that appear noisy.
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A chaotic time signal can be identified through its self-&mstructure resulting in
patterns that fill non-integer dimensions called fract@#idractal time series has sec-
tions that resemble the whole and hence can be distingufstsedstochastic signals
which are—by definition—devoid of any patterns. The noreger dimension of occu-
pation of a fractal is termed the fractal dimension. A mudittal time series differs from
a fractal series in that it is composed of interwoven subsgksdifferent fractal dimen-
sions (Frisch and Parisi, 1985). Gouldin was the first togace the utility of applying
fractal geometry concepts to combustion problems in batbutent premixed and dif-
fusion flames (Gouldin, 1987; Gouldet al, 198%,a). However, most of these and
several subsequent studies focused on the geometricatasgeopen flames. Using
hot film anemometry of the cold flow and Rayleigh scatteringsity measurements,
multifractality in the time series data of turbulent preedopen flames was illustrated
by Strahle and Jagoda (1989). However, the utility of thetédadescription to mea-
surements made in confined combusting environments hagpotdxplored save for a
recent study on the pressure fluctuations acquired priaao blowout (Gotodat al.,
2012).

Since a multifractal process entails multiple time scalesjust necessarily dis-
play a broad spectrum in the frequency domain, such as onklwbaerve in turbulent
velocity measurements. It is now well-known that turbubegibcity measures are mul-
tifractal (Meneveau and Sreenivasan (1987, 1989, 199&gr8rasan and Meneveau
(1986, 1988); Prasaet al. (1988) to name a few pioneering studies; see Sreenivasan
(1991) for an excellent review on the subject). Energy itgdaento a turbulent flow at
large scales cascade down multiplicatively through thetisesubrange down to Kol-
mogorov scales, where it is finally dissipated. The mulktifahformalism is necessary
to understand and explain the reason for the intermittehsgiwved in the measurements

of this energy dissipation rates in the inertial range.

The amplitude spectrum of ducted combustion noise is algwvkrhave a broad
profile in the frequency domain with shallow peaks in thenitgi of acoustic modes
of the duct (Chakravarthgt al., 2007). It would therefore be interesting to examine,
whether measured pressure fluctuations acquired during stable operating condi-
tions in combustors are amenable to a multifractal desoriptWe know that the tran-
sition to combustion instability results in a transitiontbe spectrum, from a broad

one with shallow peaks, to one with sharp, discrete peaksidRrd combustion noise
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is multifractal, we should therefore expect deviationsrfrthis multifractality, when
the operating conditions are varied systematically towaaimbustion instability. Such
deviations—if they exist—are of prognostic value, sinceytipresage an impending

instability.

1.8 Overview of the thesis

To achieve these objectives, experiments were performedairoratory scale combus-
tor operating in a turbulent flow-field combustor to acquinsteady pressure measure-
ments and high speed flame images for a variety of operatindittons from stable
operation towards combustion instability. Then, techagjfrom nonlinear time se-
ries analysis such as phase space reconstruction, receirgerantification and fractal
analysis are applied to the measured time signals to clesizethe various dynamical
states in order to identify the routes (pathways) undeglgimch undesirable transitions
in combustors. Finally, precursor measures are soughofprdvide an operator of
fielded combustion systems with early warning signals ofrapeinding combustion

instability so that such regimes are avoided altogether.

The remainder of the thesis is organized as follows. Schesattthe experimental
setup and details of data acquisition and post-processs@ravided inChapter 2.
The study principally focusses on a bluff-body stabilizedthward facing step com-
bustor burning LPG as fuel. The results presented in theystisd hold true for a swirl
stabilized combustor the results of which have been predegisewhere (see list of

publications).

In Chapter 3, the nature of the dynamics of pressure fluctuations acdjuiveing
stable operating conditions at operating conditions faayafkom the stability margin
are investigated. The technique of phase space reconstruatintroduced and the
methods to investigate determinism in a time series arstited. Finally, a test for
chaos is described to understand whether the irregularitirie@ pressure fluctuations

signify chaotic dynamics.

The irregular burst states reported in the literature arsgtded prior to combustion
instability are explored itChapter 4. Methods to construct bifurcations diagrams for

signals with varying amplitudes are introduced. Repegtiterns in the dynamics are
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tracked using recurrence plots and the transition in theepet at various dynamical
states are highlighted. A mechanism is proposed to destirédbenset of combustion

instability in a turbulent flow-field.

Chapter 5 discusses a phenomenological model for the intermittergttsiates
which is derived from first principles based on the proposedmanism. The model in-
corporates the hydrodynamic contributions to the combastistability problem both
due to turbulence and due to periodic vortex formation angimigement in the com-
bustion chamber. The possibility of devising model-basatyevarning measures are

also explored.

The fractal scaling of combustion noise is exploredCimapter 6. The methods
to determine the generalized scaling behaviour of norradlmoments of a measured
pressure time signal are introduced and the possibility miuétifractal description of

combustion noise is explored.

In Chapter 7, the possibility of intermittent burst oscillations clasdean blowout
is investigated. A description of the intermittent dynasmas arising through the forma-
tion of homoclinic orbits with subsystems operating ovédiedéent time/length scales is
introduced. The flame dynamics of the states observed mrilman blowout are also
presented and contrasted with the flame dynamics obsenretyditombustion insta-

bility.

Chapter 8 asks the question whether unsteady combustion and heaseectge
necessary to obtain intermittency and the precursors skeclipreviously. Using a
simple setup consisting of a ducted unsteady flow acrossificepithe transition to
self-sustained oscillations (whistling) is investigalsdmeasuring the pressure fluctu-
ations just outside the lip of the orifice. A mechanism is josEd to explain the onset

of whistling and the presence of precursors to whistling@@red.

Finally, the conclusions derived from the study are sumpearinChapter 9 along

with an outlook for future investigations.
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CHAPTER 2

Experiments

This chapter describes the experimental setup and thesmefrtation used to obtain

the measurements reported in the study.

2.1 Setup

Experiments were conducted on a backward-facing step csimbgeometry with the
flame stabilized using a circular bluff-body operating athReynolds numberHe >
18000). Schematics of the setup for the measurements reportée iourrent study is
shown in Fig. 2.1. It consists of an upstream plenum, a buwhé&dmm diameter and a
combustion chamber of cross-sectitinx 90mm? with extension ducts. The length of
the combustion chamber along with the extension ductsid@sm. A support mech-
anism that hinges on the plenum was used to traverse a shaftof diameter into the
burner. The bluff-body—a circular disk of diametgtmm and thicknesg0mm—was
then attached to this shaft and was positiobeam from the rearward facing step us-
ing a rack and pinion traverse of least colntm. The central shaft was used to deliver
fuel (LPG) into the chamber through four radial injectionld®of diameterl.7mm
and spark-ignited in the recirculation zone at the dumpelasing anl 14V ignition
transformer. The fuel injection location wa§0mm upstream from the bluff-body. A
circular disk of2mm thickness and0Omm diameter with 300 holes of diameteffmm
was inserted0mm downstream of the fuel-injection location to prevent flastib It
also served to reduce the influence of pressure perturlsaticthe plenum on the dy-
namics happening inside the combustion chamber. A blowadoechanism was used
to supply air from high pressure tanks which then passeditfira moisture separator

before finally entering the plenum chamber.
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Figure 2.1: (a) The experimental setup used in the curremtyst The length of the
combustion chamber i#0mm with three extension ducts, two of length
300mm and one of length00mm. The measurements reported in this study
were acquired using a piezoelectric transducer locatedm from the
backward facing step. The design of the combustor was adi&uien Ko-
marek and Polifke (2012).

2.2 Measurements

Unsteady pressure measuremeptswWere acquired foBs at 10k H z using piezoelec-
tric transducers with a sensitivity @2.5mV/k Pa, 0.48 Pa resolution andt0.64% un-
certainty. The voltage signals from the transducers wegeiieed using a 16-bit A-D
conversion card (NI-643) that had a resolutiont®f. 15m1 and an input voltage range
of £5V. The transducers were mounted on specially made presstigevth Teflon
adapters which were flush mounted on the combustor wall. -8€inite tubes were
provided to the pressure ports to prevent acoustic resenaitbin the mount. The
configuration helps prevent the transducers from excedsgesnd also ensured that

the phase correction required was less ttfan

Mass flow controllers (Alicat Scientific, MCR Series) witlgdal logging and mon-
itoring capabilities were used to measure and control tipplguduel and air into the
combustion chamber and had a measurement uncertaigt{0af% of reading+0.2%
of full scale). Liquified Petroleum Gas (LPG) was used as tle¢ivhich is60% C,H;
and40% C3Hg by volume. The fuel flow ratenf,) is held fixed and the air flow rate
(m,) is gradually increased leading to progressively incregagalues of Reynolds num-

ber (decreasing equivalence ratin At each flow condition, the flow was allowed to
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settle for10s before acquiring the pressure data to remove transierdsiagsd with the
change in mass flow rate. The Reynolds number was computed tie expression
Re = 4mD; /muD3, whererm (= m,+mi;) is the mass flow rate of the fuel-air mixture,
Dy is the diameter of the burneR); is diameter of the circular bluff-body andis the
dynamic viscosity of the fuel-air at the experiment corais. Corrections to Reynolds
number due to the change in viscosity for the varying fuekaiios were performed,

the procedure for which can be found in Wilke (1950).

For selected operating conditions, high speed imagesMith filter (transmission
peaks around a wave length4f1nm and bandwidth of 0nm) were also acquired si-
multaneously with the pressure measurements at a framefrbité/ = using a Phantom

v12.1 high speed camera (resoluti80 x 800 pixels.
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CHAPTER 3

What is combustion noise?

Combustion noise has been traditionally treated as stticHasctuations present in
the background of the dynamics in combustors amongst the fleat release and the
chamber acoustics. The aim of the current chapter is to subther the pressure
signals acquired from the combustor during stable opeayatimditions (termed ‘com-
bustion noise’) show signs of determinism. The presenceetdrchinism would im-
ply predictability in the underlying dynamics and allows the possibility of devising
precursor measures that can forewarn the onset of an immerdmbustion instabil-
ity. Precursors to such a transition from chaos to dynamasidated by periodic
oscillations are of interest to designers and operator®oifbtistors in estimating the
boundaries of operability. Techniques from nonlinear tsages are used to embed the
pressure signals into its underlying mathematical phaaeespThen separate tests for
determinism (Kaplan-Glass test) and chaos (0-1 test fayhare utilized to probe the

dynamic features of the measured pressure fluctuations.

3.1 Reconstructing the phase space

The amount of experimental data available at the disposat ekperimental researcher
is often just a few variables and in extreme cases just onsuneaent. The dynamics
of a combustor at different operating conditions can bealigad by reconstructing the
mathematical phase space of evolution of the time seriesaddainsteady pressure mea-
surements acquired at those conditions. In such a recatstrphase space (Takens,

1985), limit cycle oscillations would correspond to a clb$mop around a fixed point.

Such a reconstruction, also known as delay-embedding)viesaonverting the
measured time series into a set of delay vectors each of wiasha one-to-one cor-
respondence with one of the dynamic variables involved enabmbustor dynamics.
That is, we construct the vectops(t), p'(t + 7),p'(t + 27), ..., (t + d — 1)7] from

the measured pressure datg) such that these vectors in combination provide us with



maximum information on the combustor dynamics. The elemehthese vectors are
the coordinates in thé-dimensional phase space of evolution of the time signat. Fo
instancep’(d) = [p'(t;), 0/ (t; + 7),0'(t; + 27),....p'(t; + d — 1)7] is the point in the
d-dimensional phase space at time instanTo accomplish an appropriate reconstruc-
tion, we need to obtain the optimum time lag,f() amongst the delay vectors and the
least embedding dimension,| for the phase space composed of these delay vectors

such that the dynamics is faithfully captured.

3.1.1 Obtaining the optimum time delay

The optimum delayr,,; may be estimated as that value offor which the average
mutual information (Abarbanedt al, 1993) between the delay vectors reaches its first

minimum. The average mutual information of a sign@l) is given by the expression:

I(r) =Y P('(t),p(t + 7))logs 2

i=1

P (t),p(t+7)
(P'(t))P(p'(t + 7))

(3.1)

where,P(S) represents the probability of the event

To compute the average mutual information for various tiagst, we first nor-
malize the time signag¥ (¢) to lie between 0 and 1 and then sort the data in bins. The
probability distributiong/(¢) andp’(t + 7) are then obtained by normalizing the his-
tograms on these bins. Similarly, the joint probabilitytdisution P(p'(t), p'(t + 7)) is
obtained by normalizing a two dimensional histogram olgdion a two dimensional

bininp’'(t) andp’(t + 7).

Average mutual information, which is a function of the timstdnce between the
data points of a time series, is an indicator of the amountfoirimation shared by two
sets of data. The location of the minimum would, therefomrespond to a set of
vectors that would provide more information about the systiean either of them in
isolation. Shown in Fig. 3.1(a) is the measured pressuréutitions during stable op-
eration of the combustor(= 1.1, Re = 1.83 x 10%). The amplitude of the fluctuations
vary wildly and give the appearance of an aperiodic noispaig The corresponding
average mutual information for data has its first minimuyn = 1.1ms (Fig. 3.1(b)).

This values corresponds approximatelytol whereT is the time period of oscillation
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Figure 3.1: (a) The pressure signal obtained at stable tippgna&gime from the com-
bustor with the bluff-body stabilized flame (= 1.1, Re = 1.8 x 10%).
(b) The average mutual information for the signal. The optidelay is
Topt = 1.1ms.

at combustion instability. This time period was discerreafthe FFT of the pressure
signal at combustion instability. The delay vecpd(t; + 7.,:) can thus alternately be
seen to be related to the acoustic velocity in a one-to-osigida since the acoustic
pressure and velocity differ in phase @ for a standing wave pattern in the duct. The

small deviation from90° is due to damping.

The plot of I. further shows that the signal displays correlations thaagerery
fast. This rapid decay of average mutual information ingptleat the signal has a finite

memory of the past and hence indicates the possibility ardehism.

3.1.2 Optimum embedding dimension

To obtain a suitable dimensiafy in which the attractor dynamics unfold, we use the
technique developed by Cao (1997). This is an optimizedwmesf the False Nearest
Neighbors (FNNs) method (Abarbanet al, 1993) wherein one tracks the number
of false neighbours to each point in the phase space as thedelnly dimension is
progressively increased. A false neighbour to a point irsplspace is one that moves

away from it once the embedding dimension is increased. é&fastically, once the
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optimum time lag has been obtained, we can construct a meeagud) of the form:

1Pi(d +1) = Pl .0y (d + 1)

a(i,d) = S S (3.2)
|lpi(d) — pn(i,d)(d)H
wherei = 1,2,..., (N — dr) andn(i, d) is the index of the nearest neighbouring point
in phase space to the poipf. ||...|| represents the Euclidean distance between two

points. The dependency on the indes removed by taking the averagg, d) obtained

at different values of as:

N—dTopt

! ali, d) (3.3)

E -
(d) N — dTopt

Here,E(d) is a function only of the dimensiafhand the optimum time lag,,.. The
variation of £(d) on increasing the dimension frodto d + 1 is determined by defining
F1(d) as:

E\(d) = ————= (3.4)

If £;(d) stops changing when the valuedis greater tham,, thend, is chosen as
the minimum embedding dimension for the time series. Siheeatquired time signal
is limited, it is often difficult to distinguish a stochassignal from a deterministic sig-
nal merely by observing the variation &f (d) for various values ofi. Whereas?; (d)
saturates beyond a valuedfor a deterministic signal, it always increases with insrea
ing d for random signals. To clearly distinguish deterministgnals from stochastic

signals, we define an additional measihk€d) from the time serieg’(t) as:

B+ 1)
where
1 N —dtopt
FE (d) = m ‘p(l + dTopt — p(n(z, d) + dTopt)‘ (36)

Since future values are independent of past values for rarsiignals F» (d) equals
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one for all values ofl (Cao, 1997). That ik (d) is independent of. For deterministic
signals on the other handj,(d) is dependent od, because of which there must exist
some values ofl for which E,(d) is not equal to one. The validation of the compu-
tational procedure on a simple system comprising threeledugonlinear differential

equations is provided in Appendix A.
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Figure 3.2: The measurds, (d) and E,(d) for the combustion noise data on applying
Cao’s method¢ = 1.1, Re = 1.83 x 10%). The plot of E;(d) saturates
afterd = 10. Also, the values ofZ;(d) do not equal 1 for all values af.
This indicates that combustion noise is deterministic witbderately high
dimensions.

The variation off); and E, for the combustion noise data are shown in Fig. 3.2. The
least embedding dimension for the combustion noise datae#aken to be, = 10 as
the measuré’; does not vary significantly aftetr= 10. Also, the value of the measure
E»(d) is not equal to 1 for all values of. Hence, we see that combustion noise is
deterministic with a moderately high dimensional attracfdthough, average mutual
information and Cao’s method to determine the least emibpgddiimension provides
us with information as to whether the signal is deterministinot, additional tests are
often performed to confirm the determinism in measured $sg@ne of such methods

is described in what follows.

3.2 Kaplan-Glass test for determinism

The local flow test for determinism is a discrete adaptatiGayp{an, 1993) of a tech-
nique devised by Kaplan and Glass (1992) for continuous mycal systems. After
delay-embedding the time series, one selects points intiaegpspace that are close
to each other. These points are then evolved in time for & sluoation known as the

translation horizon. Points in the phase space that are tdosach other tend to move
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in the same direction for deterministic signals and in randrections for stochastic
signals. Hence, for a given translation horizon, we corstvectors that connect the
initial and final points, which are then normalized and ageth These averaged vectors
would then be larger for deterministic signals. The procesisen repeated for various
translation horizons. For deterministic signals, altHotlge deterministic structure is
preserved for short horizons, it is lost once the trangtatiorizon is made too large.
Hence, the average vector lengths will be small once theslaion horizon is made

large.

3.2.1 Computational procedure

To construct a measure of determinism, we first cover thegpbpace with a grid of
non-overlapping hypercubes (cubesiindimensions). The number of points in each
cube isn; with time indicest ; 1y, (2, .-, t(jn;- If H is the translation horizon, the
change in state from timg; ;. to ¢; ) + H for each of then; points in the cubg is

given by:

Apjr=p(tix+H)—p(tr) (3.7)

wherek = 1,2, ..., n;. Note that here we have explicitly written out the index imme
of time to distinguish different points within the same hyqée. Points near the edge
of a cloud of points will have a directional bias towards thedlte of the cloud (Kaplan,

1993). To correct for thisz,xp;.,k is mapped onto a sine function as:

(¢ H) —79'(t;
Ap;.’k:{sin (27Tp(J’k+ ) p(J’k)),

Y
o (%p = +H+TA) b +T)) (3.8)
sin (zﬁp'(tﬂkk +H 4 (d = 1)) — p/(tjp + (d = 1)7))}

y

where) is the characteristic length of the embedded attractor aselspace. Summing
up all vectors through hypercube of indgxwe obtain the resultant vectd; normal-

ized by the number of vectors passing through the eyha the following fashion:
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1 Ap/. k
V:=— E 7?’ (3.9
Tony S |[Ap ]

We can then define a measuyehat quantifies local flow in phase space by averag-
ing over the vectord’; based on the number of vectors present in the hypercube (say,

1), as:

L
A= (4 @’ A
< 1=/l > (519

Here,V; represents the norm &f; (the replaced index in the subscript indicative of

the new ordering) andg is a constant defined as (Kaplan and Glass, 1992):

()
Cdy = d—id (311)
()

with T" being the standard gamma function. The measuretains values close to 1

for deterministic signals and has values close to zero miststic signals (Kaplan and
Glass, 1992).

Although A quantifies local flow, it is insensitive to false positiveattimay arise
due to a directional preference in the time series. The ndethsurrogate data helps to

circumvent this uncertainty.

3.2.2 Surrogate data analysis

Interpretation of results from experimentally acquiredadezan sometimes pose prob-
lems because filtered noise data can occasionally give gieegsion of chaos and low-
dimensional dynamics. The technique of surrogate data/sisgbrovides an efficient
method to avoid such misinterpretations. One starts thigsisavith a null hypothesis
(the default position in the absence of evidence to the aoyjtthat the experimental
data can be described by a linear stochastic model. Sueraigéd sets are generated
from a measured signal such that they retain certain clarsiits of the original data

(such as number of data points, mean and standard deviatlol® ensuring that the
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data is sufficiently randomized so that any deterministigcstire that may be present
in the original data is destroyed (Theiletral,, 1992). Techniques like the determinism
tests are then applied to both the original data and the gatecdata. If the results
are similar for the experimental and surrogate data sets;ifi.the predictions of the
tests are equally good or bad, then one cannot reject théhypdithesis that a linear

stochastic model is sufficient to describe the experimetet.

One of the techniques of surrogate generation involvesorahdshuffling the data
values in the signal, without adding or subtracting datagiyv2006). Such a random
shuffling destroys any correlation originally present agéime data points. This pro-
duces a random time signal that has the same mean and staedation as the origi-

nal time series.
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Figure 3.3: Results on applying the local flow method of dateism on the combus-
tion noise data = 1.1, Re = 1.83 x 10*,7,,x = 1.1ms). Whereas the
original data shows high levels of determinism, it is losenhhe data val-
ues are randomly shuffled. The embedding dimension was keft-a 10
for all the data setsr,,, for the surrogate sets was kept the same as that
for original data for the sake of comparison. The spikes engtrrogate
data correspond to those values of translation horiZahat are multiples
of the optimum time delay,,, non-dimensionalized by the sampling time
(0.1ms).
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3.2.3 Determinism in combustion noise

Surrogate data sets were constructed from unsteady peesmasurements acquired
during combustion noise with the same mean, standard dmviahd power spectrum
as the original data. Then the local flow test for determinigas applied on both the
original and surrogate data sets and the results are showigir8.3. Whereas the
measure\ remains fairly close to one for the original data over a raofgganslation
horizons, they remain at a lower value close to zero for thheogate data sets. The
occasional spikes correspond to those values of translatidzon which are multiples
of 7., (normalized by the sampling time). This happens because&letsy vectors
partially overlap after moving over a distancg: which also happens to be the optimum
delay chosen for embedding. Hence, we have convincing eeeéat combustion
noise is deterministic. Thus, the traditional signal plogsa paradigm often implicitly
assumed in models and analysis of experimental data setgi(@t al., 1994; Burnley
and Culick, 2000; Lieuwen, 2001, 2002, 2003; Lieuwen andaBaunk, 2005) needs to
be reexamined if one wishes to capture the onset of indiabiln combustors because

these irregular fluctuations may contain useful infornrabbprognostic value.

3.3 The 0-1 test for chaos

The motivation behind the 0-1 test (Gottwald and Melbou@&t)4) is that when the
combustor encounters limit cycle oscillations, the dyretiansitions from chaotic to
regular. The signab’(¢) is measured ensuring that the acquired value at each instant
provides essentially little information about future veduat stable operation. This can
be done by sampling at a time interval corresponding to th@rmim of the average
mutual information. Typically, this would correspond toaargpling time ofr,,,; = 7'/4
whereT is the period of oscillations in the combustion chamberryimstability. Typ-
ically, the time period of oscillations at instability isélf an unknown. However, the
detector is robust for various values of sampling intergdbag as the consecutive val-
ues are poorly correlated. For example, comparable resaiitbe obtained for values of
Topt COrresponding to the first zero crossing of the autocoicelaif p’(¢). The time pe-
riod corresponding to the dominant frequency in the FFTrdustable operation of the

combustor can also be utilized as a suitable measurétofobtain the sampling time.
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From the measured signgllt) for t = (1,2,..., N) andt; 1) — t; = 7o , translation

variables;. andr. can be created as follows:

= 2”: p'(t)cos(ct) (3.12a)

Zp sin(ct) (3.12b)

wherec € (7/5,4w/5). The mean square displacement of these translation vari-

ables may then be computed for different valueg a$ following:

M(n) = lim » ([ge(t +n) = qe() + [re(t +n) —re(t)]?) (3.13)

N—oo
t=1

with n < N. Itis seen that < n.,, wheren,,, = N/10 yields good results.

The mean square displacement is indicative of the diffusatare of the translation
variables. If the dynamics is regular, then the mean squapadement is a bounded

function in time and for chaotic dynamics, it scales lingavith time.

A modified mean square displacemént may be defined to ensure better conver-

gence properties but with the same asymptotic growth rate as

D.(n) = M.(n) — Vyse(c,n) (3.14)
where
Vowleym) = {9/ (1))? =20 (3.15)
and
(p'(t)) = lim —Zp (3.16)

N—>oo

Hence by defining vectors = (1,2, n.,) andA = (D.(1), D.(2), ..., De(neut)),
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the correlations,. given by:

K. = corr(§,A) (3.17)

which essentially allows one to distinguish between thetiypes of behaviour possible

in such systems.

To ensure robustness of the measure to outliers and spuesoisances, the median
value of K. (say K) may be taken which is obtained for different random values o
This value of K would lie close to one for chaotic signals and close to zerodgular
dynamics. If the system is inherently turbulent, the traoisito instability would be
associated with a decrease in the valuéldirom one to a value depending on the tur-
bulentintensity, i.e., higher the intensity of turbuleténstability higher the departure

of K from zero at instability.
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Figure 3.4: The results on applying the 0-1 test for chaosherbtuff-body stabilized
backward facing step combustor for signals acquired abuarReynolds
numbers. Whereas the values lie fairly close to one for chammbus-
tion which is stable, departure from one indicates the ookehpending
combustion instability which happens as the Reynolds nuiisbecreased.
The results presented are for the ensisedata which brings in some grain-
iness due to amplitude modulations. By setting thresholhatlue of say
0.9 for K, operators can be informed of an impending instability sat th
appropriate control measures can be taken.

30



3.3.1 Chaos in combustion noise

The 0-1 test for chaos was applied on the pressure measueagired sequentially
at various Reynolds numbers starting from low amplitude lmastion noise to high
amplitude combustion instability. The measiéifeemains fairly close to one during the
initial stages which indicates that combustion noise iotibhaThe value of< gradually
starts decreasing as the flow Reynolds numbers are increasetlally reaching values
close to zero at the onset of instabilities. Since this Idshaos happens in a smooth
manner, we can use the meashras a precursor to impending instability. By choosing
a threshold value oK that corresponds to the initial stages of loss of chaos (s8y,
operators get to know well in advance of an impending infitglsio that appropriate
control action may be taken through modification of contaigmeters to prevent the
onset. Further, the precursor is an objective measure ofimpity of the combustor
to unstable operating regimes since it is independent oti¢htails of geometry, fuel

composition and flame stabilization.

A controller was devised succesfully that determines tleiprity of combustors to
instability that utilizes the 0-1 test for chaos. Although used the entirgs data in the
analysis results presented in Fig. 3.4, the test perforimsgstty even with a sampling
rate as poor askH > with 500 samples of data (data acquisition §o0ms) for an

instability frequency aroun2b0H z.

Since the measure falls smoothly as the operating condiapproach onset, suit-
able control action may be taken by modifying operationaépeeters to prevent high
amplitude oscillations. Thus, the stability margins ofqtieal fielded systems can

safely be estimated without encountering instabilities.

3.4 Concluding remarks

Combustion noise was shown to be deterministic by perfagrttie Kaplan-Glass test
for determinism on unsteady pressure data acquired froiltififtbody combustor dif-

ferent combustors operating at turbulent Reynolds numférs embedding dimension
for combustion noise was seen to be much lowigr<€ 10) than turbulence which is

high dimensional. This difference can be attributed to titeraction of the acoustic
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field with the turbulent flow-field. Using the 0-1 test for clsacombustion noise was
further shown to be chaotic, which is in stark contrast wité turrent description of
the phenomenon where it is often treated as a stochastighmeid to the dynamics.
In the next chapter, attention will be focused on the intetfiaie regimes prior to com-
bustion instability—where the measure for chaag @isplayed a smooth decrease in
value from 1 towards O—in order that the transition routedmbustion instability is
identified. These states lie in between the chaotic reginmeste combustion noise and

ordered oscillations termed combustion instability.
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CHAPTER 4

What happens in between chaos and order?

In this chapter, we show that the onset of combustion inkityals presaged by oper-
ating conditions that display intermittent bursts of highgitude periodic oscillations
in pressure, that appear in a near random manner amidsicHaotuations. A mech-
anism is proposed that describes the onset of low frequenicypastion instabilities
via the intermittency route, which requires the flow-fielcb®at least locally turbulent
in the vicinity of the flame. The repeating patterns in theaiyits are then extracted
using a visualization technique known as a recurrence flsing the statistics of the
recurrent states, various measures are constructed thébreavarn an impending in-
stability well before the amplitudes start rising in the darstor. Also, since typical
measures such as the amplitude of oscillations cannot asreeeasures of bifurcation
in such systems with varying amplitudes, we also seek tdtiigesuitable bifurcation
measures to study intermittent transitions to instabihtyurbulent combustors. The
performance of these measures are then compared with g$tengxneasures available
in the literature such as the damping rate of the autocaivelaneasure of the pressure

signal.

4.1 Intermittency route to combustion instability

In turbulent combustors, the transition to self-sustawsillations from regimes of sta-
ble operation can often be triggered due to the unsteadiméss flow and combustion.
Predicting the amplitude or frequency of such triggeredllasions, or even the stabil-
ity margins of combustors remain yet a challenge for re$esiscin the field due to the
complicated nature of the dynamics in combustors amongsfidlv, heat release and
the chamber acoustics (Zinn and Lieuwen, 2005). An undwigtg of the universal

features of such transitions is limited and operators aféénon heuristic measures to

prevent instability in fielded combustors.



The distributions of the pressure measurements acquioed Gombustors well
before conditions of instability have a characteristic €aan distribution (Lieuwen,
2002) suggestive of dynamics dictated by random procesgbgse regimes. In chap-
ter 3, it was shown that combustion noise is deterministaoshand therefore is not
noise in the traditional sense of the word. Pressure sigajsired during combustion
noise were subjected to determinism tests and were showe thdwotic. Further, it
was also shown that a loss of chaos which happens as a restdfgaring happens in
a smooth fashion. An objective measutewas defined to capture this loss of chaos
independent of the details of geometry, fuel compositioflpgv parameters. However,
the reason for the smooth variation of the precursor wasxmamed in the study and

requires further elaboration.
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Figure 4.1: Intermittent signal obtained from the the bhluidy stabilized backward
facing step combustofie = 2.58 x 104, ¢ = 0.77). The signal is composed
of high amplitude oscillations interspersed amidst low hiuge aperiodic
fluctuations as seen in the zoomed regions of the signal$ iGtermittent
burst oscillations were always observed prior to the onfietstabilities.

The smooth variation of the measure for chaos hinted at tistegce of a dynamic
regime different from chaos and limit cycle oscillationsho®n in Fig. 4.1 is a sig-
nal obtained from the combustor at these intermediate tondibetween regimes of
unsteady chaotic fluctuations and large amplitude periosidlations. The signal dis-
plays bursts of high amplitude oscillations amidst regiofiew amplitude fluctuations.
Such an intermediate regime of intermittent oscillatiors wbserved in all the experi-
ments we performed prior to the transition to combustiotainisity. Also, such states
were seen to persist in time; they are not transients thateaty transform to periodic

oscillations or combustion noise.
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The present study focusses on establishing that intemittis a stable dynamical
state in combustors distinct from the regimes classifiedases (chaotic) or unstable
(periodic). Although reports of such possibly intermittbarst states are present in the
literature, their dynamics have not been investigated aradterized in detail. For an
unchoked fuel flow at the injector in a swirl combustor, Haetgal. (2008) reported
the presence of pressure oscillations that alternatedeeeta noisy period of 200 Hz
fluctuation and a silent period with a small pressure fludi@it Arndt et al. (2010)
have observed a transition in the flame dynamics betweenedftatable combustion
and self-excited oscillations in a premixed gas turbine @iadmbustor using simulta-
neousO H* chemiluminescencé&) H* PLIF and stereoscopic measurements. Bursts of
pressure oscillations have also been reported close tcattitansition to instability in

liquid-propellant rocket engines (Clavet al., 1994).

An explanation for the burst oscillations was provided ia study by Claviret al.
(1994) where the erratic behaviour of pressure fluctuatiasincorporated as a mul-
tiplicative noise term in the wave equation. The effect aksa noise term, which
was used to model the effects of turbulence, in the vicinftg sub- and supercritical
Hopf bifurcation was then explored, and the correspondiadpgbility distribution of
pressure fluctuations were obtained after deriving the éna@ equations for the un-
derlying acoustic system close to criticality. The progbs®del highlights the need for
a nonlinear approach in describing the nature of transititowever, it is known that in
addition to modulating the pressure fluctuations, turbcgesso brings with it its own
dynamics such as vortex shedding that can have contritsutgar time scales close
to combustion instability. To bring in the effects of turbaote as a parametric (mul-
tiplicative) noise term is to concede that it is not possiblelescribe or quantify the
dynamics brought about by phenomena such as the formatibwi, coalescence and
impingement of vortices. Hence, appropriately modellingse deterministic aspects

of the hydrodynamics remains a continuing challenge in tid.fi

The dynamics of fluctuations in turbulent combustors maydteeb understood as
a complex interplay amongst two subsystems operating affereht length and time
scales. Acoustics operates over time scales determineldebyassage time of sound
through the combustion chamber. Interaction due to hydranycs on the other hand,
can be spread over multiple orders of temporal magnitudealtiee broad-band nature

of the underlying turbulence. At the same time, unsteady fdw@nomena such as
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vortex shedding, roll-up, coalescence, or impingemengoaarise to dynamics over a
narrow frequency band, some of which could lie close to themahacoustic modes of
the confining combustion chamber. Hydrodynamics thus ége@ver a broad range of

time scales associated with convection and unsteadines®durbulence.

The major contribution to the driving received by the acmsgsthrough combus-
tion—other than those due to direct hydrodynamic or acoustidulation of the flame
—comes from fuel unmixedness through equivalence ratitugeations. These equiv-
alence ratio perturbations, which again arise due to amoostdulation of the feed
system and flow unsteadiness, are seen to influence only tipeitunde of heat release
rate fluctuations. Lieuweet al.(1998) have shown that chemical time scales, being typ-
ically much smaller than flow/acoustic time scales, arekahyfito provide the necessary
phase delay needed for an acoustic —chemical kinetic auyfmisustain low-frequency
instabilities. Hence, it is reasonable to assume fast csteyrand essentially incorpo-
rate the effects of combustion as part of the hydrodynamitaoustic subsystems.
It should further be noted that such a description does nocdujg#e the dynamics of
acoustics and hydrodynamics; rather it emphasizes a mududihear coupling of the

two subsystems. A model based on this mechanism will bedotred in Chapter 5.

In modelling these effects, if one were to discount the ¢ffet turbulence or aver-
age out the equations (a mean field description), the bifiorcaf the acoustic system
will be seen as a transition from a fixed point solution to aquic final state—a transi-
tion termed Hopf bifurcation. Such a description which dgaes the two subsystems
leaves no room for phenomena such as the intermittent bstatss observed in the
experiments. The intermittent oscillations can arise é& #itoustic subsystem is mod-
ulated by the hydrodynamics over slower time scales (teriiwelocity fluctuations
typically have an increased energy content at lower fregesi, essentially shifting the
dynamics of the acoustic subsystem back and forth acrodddpepoint. If the mech-
anism proposed above is correct, combustion instabilityibhulent combustors must
necessarily happen via a regime of intermittent burst lagiwhs. Further, the mecha-
nism also requires that such intermittent periodic burstaltsent when the underlying
flow-field is laminar, as there are no possible mechanismbae &r the required low
frequency, near-random modulation. Such a situation aae,dor instance, in ducted
laminar flames, as long as the flame itself doesn’'t becomealemh or in an electrical

Rijke tube as long as the mean flow is laminar. For such lantmaasitions, the r.m.s.
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levels of pressure in the system form a convenient measatetiaracterizes the onset
of instability. In what follows, we shall describe ways tcacacterize intermittent burst

oscillations observed in turbulent combustors.

4.1.1 Bifurcation diagrams

Typically, bifurcation diagrams of experimental data ar@h by tracking the peaks in
a measured signal and plotting them as a function of the alqparameter. However, the
presence of turbulence shifts the peak amplitude acrossge raf values even during
combustion instability. One simple way to bypass this issoeld be to count the
number of peaks) in the signalks(j) for a time durationt above a fixed threshold

which would correspond to acceptable levels of amplitudéHe system. IV, is the

total number of peaks that happen within that time one cam &lssign a probability of

the system to attain instability as:

f — N/Ntot (41)

The value off is a measure of the proximity of the system to instabilitye Thea-
sure also makes sense from a dynamical systems perspectiveoader parameter; i.e.,
a parameter that measures the amount of order (order innise séordered oscillations

or organized behaviour) in the system (Haken, 1985).

Figure 4.2 shows the value g¢f at variousRe starting from low amplitude com-
bustion noise to instability and back to stable operatirggmnes at two different fuel
flow rates. The threshold was set50 Pa that corresponds to the levels of pressure
fluctuations in the system during stable regimes of operatibhe values off vary
smoothly as the control parametdid) traverses regimes of stable operation towards
combustion instability. This is because of the presencenohtermediate intermittent
regime in which the pressure signals occasionally crosshiteshold and leads to in-
creased values gf. These intermittent excursions last longer in time as flomdttons
approach combustion instability and finally saturates te ihstability is reached, when
the dynamics becomes dominantly periodic. These valug¢slndis serve as an appro-
priate measure—a measure of the order in the signal—to drawifurcation diagram

in systems exhibiting widely varying amplitudes in the sitg
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Figure 4.2: Bifurcation diagram obtained through normediburst count f) for the
transition from chaotic combustion noise to high amplitadenbustion in-
stability (a)ni; = 0.55¢/s, (b) m; = 0.59¢/s. The shape of the forward
and return trajectories resembles a sigmoid (S-shaped clihe threshold
was set ab00Pa.

The bifurcation diagrams further enable us to infer the meatf criticality of the
bifurcation of the acoustic subsystem that leads to conduststability in both the
configurations. A hysteresis is clearly visible in this nefukcation diagram (Fig. 4.2).
The nature of the graphs were found to be qualitatively simah shifting the threshold
a few tens of Pascals on either side although there is aniatsbquantitative change
in the probability measurg. Hence, itis to be concluded that the bifurcation diagram is
useful only to infer the qualitative nature of the transis@t the onset of instability. The
bifurcation diagrams show that the presence of the bluffybzauses the bifurcation of

the acoustic subsystem to be subcritical.

4.1.2 Precursors to combustion instability

Although bifurcation diagrams can be drawn by computing ghabability that the
peaks in a measured signal exceed the levels of noise in thbustor, they cannot be
used to determine the proximity of the system to an impenuisigbility sufficiently in
advance. This is because the meagustarts growing only when the amplitude levels
in the combustor grow, which can in turn be conveniently besneed by computing

the r.m.s. levels of pressure fluctuations in the combustor.

Lieuwen (2005) has used the damping rate of the autocaoeltd predetermine
the stability margin of combustors. The transition poinswdentified as that operating

condition at which the damping of the autocorrelation of sugad signals become zero.
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After computing the autocorrelation of the pressure sigaaHilbert transform was
applied on the autocorrelation to obtain the variation & &mplitude and phase of
the autocorrelation. The effective damping rate was thdaioned as the slope of the

logarithmic decrement of the amplitude of the autocorieat

(a) T — b
;if ?SZS (M) o
1200157 = 9¢
+T = 2.5s
" T = 3s
_5 3 —40
& 600 o —
s =0
X' =1.bs
% *T = 2s
80 T = 5%
ot o = 3s
15 2 n 25 3 15 2 - 25 3
¢ x 10* € x 10*

Figure 4.3: Variation of the sound levels in the combustanaasured by (a) the r.m.s.
values of unsteady pressure signal,(,) with Re (ni; = 0.59g/s). (b) The
variation of the precursor measure based on the effectinguhg rate of
the autocorrelation of the pressure time traces.

Shown in Fig. 4.3(b) is the variation of the damping rate @ #utocorrelation of
the pressure time traces acquired for various values of fleynBlds number starting
from regimes of combustion noise towards combustion inlstabThe damping rate
was computed fof.04s (roughly 10 acoustic cycles at instability), by performiag
linear regression. Unlike in Lieuwen (2005), a band passrfitas not applied to the
input pressure signals. To compare the performance of teisupsor measure, the
variation of the r.m.s. values of the pressure time serieth® various conditions are
also shown in Fig. 4.3(a). To show the convergence of the aneasthe damping rates
and r.m.s. values computed for increasing intervals of dedaisition are also shown.
The regression errors associated with the straight lineffithfe damping rates have not

been shown for the sake of clarity.

It is seen that the precursor based on damping rates per&disfestorily and show
linear dependencies only after the amplitude starts rigingpe combustor. In other
words, they were seen to have a performance comparable tmehsuref used to
construct the bifurcation diagrams. Further, it is seen tha decay rates fluctuate
wildly and converge slowly, for regimes prior to the sharppéitnde rise. The precur-
sor based on decay rates are thus seen to perform inadgraradedhow non-monotonic

dependencies during regimes of combustion noise and thteo$tatermittency. This
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is expected since an ‘effective damping rate’—which is aerage measure based on
a linear analysis—cannot be defined for intermittent or thaignals that entail non-
linear, time-localized dynamics. In the next subsectiomjmroduce measures that can
characterize the intermittency in a measured signal angacgrthe capability of these

measures with the traditional methods as precursors to asimob instability.

4.2 Recurrence quantification

4.2.1 Recurrence plots

The temporal features of the dynamics of a measured signabeaharacterized by
tracking the regularity of the trajectories using recuceeplots. Recurrence is a fun-
damental property of dynamical systems and recurrence pltdw one to visually
identify the times at which the trajectory of the systemtgisoughly the same area in
the phase space (Marwat al., 2007). The technique requires reconstruction of the
mathematical phase space of evolution of the pressure #itictis, the procedure for
which is outlined in Chapter 3. In reconstructing an appaiprphase space, a knowl-
edge of the appropriate embedding dimensigand the optimum time lag,,; that is
used to generate the delay vectors from the measured peetssar series (of length
Np) is necessary. A recurrence plot is constructed by comgutie pairwise distances

between points in the phase space. Then, a matrix of rea@sanay be obtained as:

Rij = @(6 - ||p; _p;||) Za] = 1727 ---aNO - dOTopt (42)

where© is the Heaviside step function ards a threshold or the upper limit of the
distance between a pair of points in the phase space to @vribiem as close or recur-
rent. The indices represent the various time instances Wigedistances are computed
and the boldface represents the vector of coordinates ipliase space. The recur-
rence matrix is a symmetric matrix composed of zeros and ands recurrence plot
is the 2D representation of this matrix as the trajectoriedve in time. The ones in

the recurrence plot are marked with black points and repteékese time instants when
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the pairwise distances are less than the threshdldhite points in the recurrence plot
correspond to the zeros in the recurrence plot and corredpdhose instants when the

pairwise distances exceed the threshold.
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Figure 4.4: Recurrence plots and the corresponding unsfgadsure signals acquired
during combustion noise (top rowe = 1.83 x 10%), intermediate inter-
mittent regime (middle rowRe = 2.50 x 10*) and combustion instability
(bottom row, Re = 2.78 x 10%) from the bluff-body stabilized combustor.
The threshold for the recurrence plot was chosen te be\ /5 where) is
the size of the attractor, defined as the maximum distaneedeet pairs of
points in the phase space. The black patches in the intemhand chaotic
oscillations correspond to regions of low amplitude presdiluctuations
relative to\. The distance between the diagonal lines in (c) corresptinds
the time period of oscillation during instability.

Figure 4.4 shows the recurrence plots drawn for the pressgmals acquired during
(i) combustion noise, (ii) intermittent regime and (iii)rabustion instability. The data
was under-sampled to a frequenkyof 2.5k H z and was embedded in a phase space
of dy = 10 with an embedding delay,,, = 1ms. The under-sampling was done to
reduce the computational cost involved in obtaining theimemnce matrix. The recur-
rence plot for the chaotic combustion noise is seen to beg(&ig. 4.4(a)). This is to

be expected since the dynamics is chaotic with little regdmhity in the patterns. On
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the other hand, the recurrence plot during combustion ligtadisplays a pattern of
diagonal lines indicating high repeatability (recurrenicethe dynamics (Fig. 4.4(c)).
The time duration of the signal was chosen to0bks to highlight the diagonal lines
in the recurrence plot which would otherwise not be visibl&e separation between
the diagonal lines gives the fundamental time period ofll@éicin during combustion
instability. The intermediate regime has a recurrence thiat consists of perforated
black patches amidst white patches (Fig. 4.4(b)). The h@t&hes represent the times
when the system exhibits low amplitude chaotic oscillatgiand white patches repre-
sent the higher amplitude periodic bursts. This is a patigital of intermittent burst
oscillations. The recurrence plots thus help visually tdgithe route to instability in
turbulent combustors. The transition proceeds from chemslpustion noise) to order

(combustion instability) through an intermediate intdtemit regime.

4.2.2 Precursors using recurrence quantification

Several statistical measures may be constructed througlcuarence quantification
analysis of a measured signal that could serve as usefulumsasf intermittent os-
cillations. These measures can further be used as prestosan impending instability
because they vary in a smooth fashion as the operating comglitraverse the inter-
mittent regime into conditions of combustion instabilitgy tracking the probability
distribution of black points (or white points) in such platseasures can be constructed
that can distinguish amongst the dynamically differenimesg of the combustor, the

procedure for which is outlined in the next subsection.

In constructing the recurrence plots of Fig. 4.4, the tho&sh was a relative mea-
sure as it depended on the size of the attractor at that plntioperating condition
(Reynolds number). This enables one to understand thetafianadi changes in the un-
derlying dynamics in phase space. In order to obtain quablé#iprecursors across dif-
ferent values of Reynolds number, the threshold needs telodiked at some suitable
value. Fixing the threshold allows one to compare the vahii¢le various statistical
measures obtained using recurrence quantification as thietparameter is varied. In
what follows, the fixed threshold value (say) was chosen to be slightly higher than
the size of the attractor obtained at the lowest operatiBegholds number. It should

be mentioned that the thresholds sizes are indicative & ticidean distances between
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points in the phase space (/do|p'|), and should not be confused with the amplitude

levels in the combustorf'|).

A number of suitable markers that foretell an impendingahgity may be con-
structed by counting the number of black points in the resnae plot. The density of
black points in a recurrence plot measures the recurreneearrdghe dynamics of the

system and can be obtained as:

1 &
RR = 2 Z R;; (4.3)
ij=1

whereN; = Ny — do7,,. Fs. R;; is one for a black point and zero for a white point. The
signal was sampled at a frequeni¢yof 2.5k H z for 3s to give a value ofV, of 7500 and
was embedded in a phase spacépf 10 with an embedding delay,,, = 1ms. This
density of points in the recurrence plot is seen to decreasieesapproach of instability
(Fig. 4.5(a)). This is expected since the number of blackgsdn the recurrence plot
would come down as instability is reached because the prdistances now exceed

the threshold more often.

This decrease in the density of black points should therespond to a decrease
in the time spent by the system in aperiodic states which iasoned by a quantity
7o (normalized with the time duration of evolution of the ti@@ry in phase space),

defined as:

) UN;ZUP(U)
NS p)

(4.4)

To

with P(v) being the frequency distribution of the vertical (horizahtblack lines of
lengthv in the recurrence plot for a signal sampled at a frequericyThe quantity
To also quantifies how long the system remains in a particulaadycal state (in this
case, chaotic fluctuations). Hence we expect this quardityerid towards 0 as the
system transitions completely into periodic oscillati¢sse Fig. 4.5(b)). The value of

7o Will be equal to one at conditions of combustion noise.

Finally, the Shannon entropy of the signal can be obtained from the recurrence
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Figure 4.5: Performance of the statistical measures ofrniteency obtained through
recurrence quantification for pressure time traces samgtl@dbk H = for
3s. The measures plotted correspond to (a) the recurrencefrdy@mamics
(RR) which measure the density of points in the recurrence |i)tthe
average passage time spent by the dynamics in aperiodiodhims ),
and (c) the entropys] of the diagonal length distribution. The threshold
was chosen ag ., rf = 1900Pa which are close to the size of the attractor
(Moiurs = 1955.5Pa) in the underlying phase space at the lowest measured
Re.

plot using the expression:

Ny

s =Y p(l)logp(l) (4.5)

=1

where the probability that a diagonal line has lengit(!) is given by:

p(l) = (4.6)

where P(l) is the frequency distribution of the black diagonal linedesfgth/. Shan-
non entropy is a measure of the amount of order (disorderhensystem. We see
that the Shannon entropy of the signgl fends towards zero at the onset of instability

(Fig. 4.5(c)). A decrease in entropy indicates that theesygs approaching a state of
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regularity or there is an emergence of order out of chaoss fitaikes sense intuitively
as we know that the recurrence plots for a periodic signasiste of black, parallel

diagonal lines and that the oscillations correspond to dered state. Hence, we nat-
urally expect the entropy to come down as operating conditeppproach combustion

instability.

The relative merits of these measures as early warning Isigmanstability were
gauged by comparing their performance with the r.m.s. wabfethe pressure time
series (Fig. 4.6(a)). The convergence of the measures witiceeasing duration of data
acquisition was also inspected to ensure that the preci$ithhe measured quantities are
increased. The converged measure represents its avetagatthe flow condition, as
an ensemble average of the measure over many realizationkidbend to an average
measure obtained over large time durations. Since we doavetmultiple realizations
(pressure time traces) at the same operating condition,awe adopted this measure
of convergence to infer that uncertainties in estimatiothete average measures have

been minimized.

The measuré?R is seen to have inverse relationship with,. and has good con-
vergence as the time duration is increased filom 0.5s to T' = 3s. However, we see
that the variation iy ands starts much earlier than the regimes when amplitudes start
rising in the combustor as indicated py, .. These measures vary sooner as they quan-
tify the time-localized statistics of the burst oscillatjdor instancer, measures the
average duration between two successive bursts. The W@ the measures with
the threshold size, is shown in Fig. 4.6. Among the precursor measurgshows
the largest variation as, is varied. However, the overall qualitative features awe pr
served even when the threshold is varied. These resultsatedihat a knowledge of the
amplitude levels in the combustor during stable operasaesirable for the optimum

performance of the precursors.

Although it is possible to define additional quantifiable qunesors (see Marwan
et al. (2002) for a detailed list of statistical measures consgaiaising recurrence
plots), our purpose in this section was merely to illusttaggpower of recurrence quan-
tification in forewarning impending combustion instalyiliThe reason why these pre-
cursors work is due to the presence of an intermittent regirbarst oscillations amidst

chaotic combustion noise and ordered periodic oscillatidore generally, since these
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Figure 4.6: Variability in the statistical measures of mtétency for different threshold
sizese, for the pressure time traces sample® at: H > for 3s at various
Re. The measures plotted correspond to (a) the recurrencefrdymamics
(RR) which measure the density of points in the recurrence gintthe
average passage time spent by the dynamics in aperiodiodhims ),
and (c) the entropysj of the diagonal length distribution.

measures only distinguish the passage of dynamics fromatictia an ordered state
through intermittency, such precursors can possibly bd asearly warning signals to
an impending instability in a variety of turbulent flow syst® encountering periodic

oscillations.

4.3 Concluding remarks

The transition from combustion noise to combustion inditgbn turbulent combustors
was always seen to be presaged by an intermittent regimeasmdmf bursts of high-
amplitude periodic pressure oscillations amidst regiohaperiodic, low-amplitude
fluctuations. This gives an altogether different pictur@nfrwhat one would expect
from a mean-field description of the phenomenon, whereitréresition happens from
a fixed point to a limit cycle via a Hopf bifurcation. A mecham was proposed which

necessitates that on changing a system parameter, théitnans instability in com-
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bustors must happen via the intermittent route, provideduhderlying flow-field is

turbulent.

A smooth and continuous measure to plot bifurcation diagrionparameter vari-
ation in combustors with a turbulent flow-field can be obtdibg counting the number
of peaks in a measured signal above a predefined threshoktendgis was observed
for variations in the Reynolds number using this measurathEy precursors to an
impending instability can be obtained through recurrengantjfication that can warn
an operator of fielded systems sufficiently in advance, soagharopriate control action
may be taken to prevent detrimental oscillations. Theseypsers are seen to detect
and warn the onset of an oscillatory regime well in advancgttoér measures based on
the sound levels in the combustor and effective dampingraleese measures act as
effective precursors because they act as quantifiers ohteemittency in a measured

signal.

It is quite possible that combustors in fielded systems dandte limit cycle oscilla-
tions, provided the amplitudes are within a reasonablegahe passive control meth-
ods available in the literature work by increasing the damgpor by modifying some
design or flow features to suppress the instability ampéisydnd possibly improve sta-
bility margins. Hence, they fall under a different class afthods complementary to
what is proposed herein. The methods described in this ehatrn the operator that
oscillations are about to set in for further variations inogrerating parameter. Armed
with this knowledge, the decision lies with the operator thiee to let the operating

conditions cross over to regimes of limit cycle operation.

At present, there are no reliable measures to pre-detertihenamplitudes of os-
cillation at the onset of instability in combustors. Emphaypassive control measures
requires a knowledge of the amount of damping required tpreags the instability am-
plitudes when the oscillations set in whilst ensuring tihat performance is not com-
promised. The technique presented here provide the operihoan alternative choice,

one which is aimed at avoiding a region of unstable operatitogether.

In the next chapter, we shall discuss a simple phenomeraabgiodel that de-

scribes the intermittent features seen in experimentdb@séhe proposed mechanism.
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CHAPTER 5

A phenomenological model for intermittency

Based on the insights gained from the experiments, a phemwogical model is in-
troduced in this chapter to describe the intermittencyedatcombustion instability.
It is adapted from the vortex impingement model of Matveed @ulick (2003). In-
termittency arises through a variability in the travel tsrad the vortices to reach and
impact the bluff-body starting from the dump plane. The ¢bapnds with a qualitative

comparison of the precursor measures obtained from the Imatthethe experiments.

5.1 Inputs from experiments

Typically, for the kinds of flow-fields established in comtars, the instability becomes
hydrodynamically coupled (Poinset al., 1987; Yuet al, 1991). The formation of
large-scale coherent vortices at the onset of combustgiability has been reported by
a number of authors in the literature (Parkeml., 1979; Pitz and Daily, 1983; Hegde
et al, 1983; Poinsoet al,, 1987; Yuet al, 1991). Shown in Fig. 5.1 are a sequence of
line-of-sight integrated instantaneous flame images aeduuring combustion insta-
bility. The image sequence shows a vortex forming in the dphape of the combustor
during the compression phase, growing as it convects dogarstand impinging on the
bluff-body; resulting in vigorous mixing and heat releaSel{adow and Gutmark, 1992;
Coats, 1996). The flame is then pushed back towards the duanp pi the rarefaction

phase of the pressure signal and the cycle renews.

The spectra of pressure oscillations as well as that of teesity signal as measured
by a PMT during combustion instability reveal a sharp fregyeat the subharmonic of
the instability frequency (Fig. 5.2). The dominant freqoers atf, = 244.9H z and the
subharmonic is af, = 123.1Hz. The spectral bin size wasf = 0.12Hz. The mean
temperature of the gas near the wall as measured by a theapledocated50mm
from the backward facing step wds = (1196 + 30) K; which gives the quarter-wave
mode at(247.6 + 4) Hz. The sub-harmonic frequency is thus probably hydrodynamic
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Figure 5.1: A sequence of line-of-sight integrated, instaaousC' H* chemilumines-
cence acquired during combustion instabili§e(= 3.17 x 10%,¢ = 0.62).
The time delay between successive imagédsis. The outline of the bluff-
body is provided for the ease of visualization.

and lies roughly at half the frequency corresponding to thartgr-wave mode at the

operating conditionfge = 3.17 x 10*, ¢ = 0.62).
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Figure 5.2: Evidence for sub-harmonic forcing during costlmn instability. (a)
The pressure signal and (b) the corresponding amplitudetrspebtained
through a FFT Re = 3.17 x 10%, ¢ = 0.62). (c) The spectra of th€ H*
chemiluminescence intensity at the same operating condigar the bluff-
body.

If the mechanism proposed in Chapter 4 is correct, the poeseh intermittent
burst states are also a result of the coupling of the hydraxyes with the acoustics.
The model that we use to describe intermittency must thexefecessarily incorporate

the coupled two-way interactions amongst the hydrodynsuaind the acoustics of the
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confinement.

5.2 Model description

We consider a bluff-body stabilized backward facing stemisostor of length. oper-

ating at turbulent Reynolds numbers with an incoming flowoegy of U, (Fig. 5.3).

\ortices are formed at the dump plane that carry the flame andect downstream to
impinge on the bluff-body located at a distantefrom the backward facing step of
step heightd. This impingement leads to intense fine scale mixing and fedehse.

When the heat release rate by vortex impingement on the-baaf{ happens in phase
with the pressure fluctuations inside the combustion chantie pressure fluctuations
are amplified. The acoustic field then in turn modifies the sigfcat the dump plane
resulting in a periodic heat release rate through vortexnggment. This creates a
positive feedback loop between the hydrodynamics and themmnent acoustics and

the oscillations become self-sustained, resulting in agstibn instability.

L.

L

Figure 5.3: Schematic of the bluff-body stabilized combustThe length of the com-
bustor isL and L, refers to the location of the bluff-body in the combustion
chamber. The reactants flow into the combustor through theebwat a
mean flow velocity/, andd is the height of the backward facing step.

The typical Mach numbers in combustion chambers are low duké high tem-
peratures. Hence, the contributions of mean flow velocitysately be ignored in the

governing equations for the acoustic oscillations whideraheglecting temperature
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gradients and viscous effects may be written as (Annaswetral, 1997):

o 1oy

E + % o 0, (518.)
op o .
of TP = (v-1DQ (5.1b)

with the heat release ratg modelled as in (Matveev and Culick, 2003):

Q=8> T;(t—t;)d(x— L) (5.2)

Heret; refers to the instance of impingement of tfié vortex that has a circula-
tionI';. The termp is a suitable coefficient that relates the vortex impingerethe
heat release rate. Since the wavelength of sound propagatiomparable to the com-
bustion chamber length, the acoustic field can be treatesh@slinensional and the

geometry is approximated as a closed-open duct.

The pressure and the velocity fluctuations inside the ductivan be formally ex-
panded in terms of basis functions (Zinn and Lores, 1971)shtasfy the boundary

conditions as follows:

N . 0
p(z,t) = —po Z nnw cosk,x, (5.3a)
n=1 n
o N
Uz t) = = Z N (t)sink,x (5.3b)
7 n=1

with pg = poc2 /7, kn = (2n—1)7/2L andw,, = cok,,. These expansions satisfy Eq. (1)
and the boundary conditions’(z = 0) = 0 andp’(z = L) = 0) trivially. Substituting
Eq. (4) into Eg. (2) and performing a projection over the v&snctions (Balasubrama-
nian and Suijith, 2008 results in the following set of second-order ordinaryetiéntial

eguations.
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T + Enlin + W2 = cwpcosk, L, Z I;6(t —t) (5.4)
J

wherec = —2( — 1)5/Lpo. In the equation, the damping tergyyj,, was introduced to

model the acoustic losses with the mode dependent dampiimgdeas:

Sn _

51_001

“n _ (2n - 1)? (5.5)
where¢; is the damping rate of the combustion chamber which can beunead exper-
imentally. The damping terrg, represents the end losses from the chamber (Sterling
and Zukoski, 1991). The jump conditions are obtained bygirateng Eq. (5) once and
imposing continuity of the solution. These jump conditiémsacoustics at the moment

of vortex impingement may be written as:

tT t

i o= nni , (5.6a)
antj =1, + cljw,cosk, L, (5.6b)

The convection of the vortices from the dump plane are medelk:

d.
% = aly + u'(z,t) (5.7)

Here,a is a coefficient that describes the fraction of the mean w§1¢,) at which
the vortices convect in the combustion chamber. To accamthe variations in the
size of the vortices and the accompanying differences iir ttaavection velocities,
a Gaussian distributioV (ap, 0,,) is assigned tav centered around the fractiom,

corresponding to the mean convection velocities in thevalhg manner:

a=aqy+ 0,0 (5.8)

wherep = N (0, 1), ando,, is the standard deviation. The choice of a Gaussian distribu

tion is motivated by observations on turbulent velocity sweaments. The distribution
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of a thus represents a distribution of the vortex sizes or of thréex convection ve-
locities and can be thought of as modelling the broadbangreatf turbulence. The
presence of the damping term ensures that the contribudiom$o turbulence are more
dominant at low frequencies as observed in turbulent viglaoseasurements. Follow-
ing (Matveev and Culick, 2003) the variation in circulatiatithe dump plane is given

by the expression:

d_F _ ugep
dt 2

(5.9)

with us, = Uy + 4/(0,¢). When this value of circulation exceeds a critical value
Lot = usepd/2St, anew vortex is formed at the step (Matveev and Culick, 2008¢h
then convects downstream according to Eq. 5.7. Heres the Strouhal number for the
backward facing step of step heightlt is assumed that the circulation is conserved as

the vortex convects downstream and impinges on the blufftbo

5.3 Preliminary results

Simulations were performed using the model to obtain a taiaie match with the phe-
nomena obtained in combustors operating at turbulent flowditions. The parameters,
where possible, were chosen to match those corresponding éxperiments described
in the previous chapters. The value of the parameteas chosen as 0.2 with, = 0.05
which corresponds to a turbulent intensity58f at the dump plane. The Strouhal num-
ber St was chosen as 0.29 based on experimental observationskwénakfacing step
geometries (Bhattacharje al, 1986). The value of the jump coefficientvas cho-
sen ass x 1072 to obtain a qualitative match between the pressure ampktfibm
the simulation and experiments. The damping coefficignt 295! was obtained by
measuring the decay rates of pressure oscillations in thergments when the fuel was
cut-off. Equations were integrated using’a order Runge-Kutta scheme with a time
stepdt = 5 x 1072 for 100001 time steps and convergence was ensured by clgoosin
N = 10 basis functions. The acoustic pressure was measuree=al.09 in line with
the position of the transducer used in the experiméits.{» from the backward facing

step).
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Figure 5.4: Results from the model for (&), = 8.0m/s, (b) Uy = 8.4m/s, (C)
Uy = 8.7m/s and (d)U, = 9.0m/s. As the flow velocity increases, the
dynamics transition from intermittent regime towards sel$tained com-
bustion instability. The duration of such intermittent ftgrincrease as the
system approaches instability. The transient respondseasvaible in the
signal. The values of the various parameterscgre- 700m/s, v = 1.4,
L.=0.05L =0.7,d = 0.025, ¢; = 29s~'. The initial conditions corre-
spond ton; = 0.001, n;; = 0, ; = 0 with N = 10 basis functions.

The results from the model for various flow velocities leadinp to combustion in-
stability are shown in Fig. 5.4. As the flow velocity increasthe pressure signals start
displaying intermittent bursts as seen in the experiméfits 6.4(b,c)). The duration
of these periodic bursts increases with increases in flowcitgl until eventually the
system transitions to large-amplitude oscillations. Téwults are in qualitative agree-
ment with the experimental results. These bursts of periodcillations emerge from
the background fluctuations in a near-random manner. Thesse@n to correspond di-
rectly to the parameter, in the model. In other words, small variations in the size of
the vortices lead to small variations in their convectioloegies. Therefore, these vor-
tices impinge on the bluff-body at slightly different timesis this variation that results
in the almost random appearance of these bursts in the peesgnals. The modulation
in the amplitudes of pressure oscillations at combustistainility also results from the

small variations in vortex impingement times.

The amplitude spectrum of the pressure oscillations obtafrom the model prior
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to instability is shown in Fig. 5.5(a). The spectrum revehéspresence of a frequency
around250H z. This is the acoustic frequency of the dugf)(as it remains invari-
ant with flow velocities (see Fig. 5.5(b)). The spectra alsovwsthe presence of an-
other dominant frequencyf() whose higher harmonic slowly approaches the acoustic
frequency and finally locks-on to the acoustics. This sulpdloaiic frequency corre-
sponds to the frequency of vortex impingement on the blotiyb Since the frequency
of impingement varies linearly with flow velocity (Fig. 5.plwhen the flow velocity
U, is such that the vortex impingement happens at the sub-hmacrfrequency of the
fundamental acoustic frequency, the oscillations becagifesgastained and the ampli-
tudes rise sharply. The presence of this sub-harmonicémeyudue to hydrodynamics
around125H z is clearly visible in the experimental data shown in Fig.(b,). The
peak seen a@00H z in the experiments is absent in the simulation (Fig. 5.54a)jve
have assumed a closed-open geometry for the combustor. udgwie experimental
mode shape obtained from the combustor using pressureltregers mounted along
the length of the combustion chamber is close to a quartgewsode and hence we

approximate the solution using quarter-wave modes.
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Figure 5.5: (a) Amplitude spectrum of the signals &@r= 8.0m/s. (b) As the mean
flow velocity increases, the hydrodynamic frequerigyapproach the fun-
damental acoustic frequency,(~ 250Hz). At the onset of instability,
the acoustic oscillator receives a forcing from the hydradyic oscillator
at its sub-harmonic frequency,(~ 125Hz) and there is a flow acoustic
lock-on inside the combustor which results in large amgitgombustion
instability.

The intermittent oscillations will not be observed if we sgt= 0. In this case,
the effects of vortex impingement are either stabilizinglestabilizing depending on

the frequency of impingement. When the vortex convectidoorges are distributed
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(oo # 0), occasionally the convection velocity of a vortex is suthttits impingement
frequency is close to the sub-harmonic of the fundamenw@lstcc frequency. This
results in a favourable phase relationship between therbkstsed through impinge-
ment and the acoustic pressure oscillations and leads fortination of an intermittent
burst in the signal. The distribution fer was chosen as a Gaussian to emulate the
near-random appearance of bursts in experimental dateh @stributions ofa may

be refined using PIV measurements to obtain better quamitedmparisons. The in-
termittent feature in the dynamics was seen to be robustftereint choices of the

parametery.

Systematic variation of operating conditions for expenitseon bluff-body and
backward-facing step combustors in turbulent flow-fieldsrfrstable to unstable op-
eration indicate the presence of a lock-on phenomena betthieesortex shedding and
duct acoustics, resulting in the excitation of high-amyulé discrete tones at the onset
of combustion instability (Chakravarttet al, 2007,a). It is also known from mea-
surements of the response of flames to flow disturbancesfléima¢s are capable of
driving the subharmonics of the fundamental acoustic feeqy—in addition to the
fundamental (B. D. Bellows, 2006). Such subharmonic peak®\valso observed in
the spectra of th€’ H* emissions measured by a photomultiplier (Fig. 5.2). Theahod
thus introduces a simple approach to interpreting the dycgabserved in combustors

operating in a turbulent flow-field.

5.4 Precursors to combustion instability

In the previous chapter, several precursors to an imperodingpustion instability were
defined by quantifying the intermittency in experimentagsure measurements. One
of these precursors involved tracking repeating pattermeaurrences in the dynamics
of pressure oscillations. These recurrences are quanisiad binary distance matrices
depending on whether the distances between pairs of paitite ireconstructed phase
space (of dimensioi and embedding delay) exceed a fixed threshold (Marwahal.,
2007). A plot of this matrix?;; v < x) On a 2D plane is called a recurrence plot (Fig. 5.6)
wherein the black points correspond to those time instah&smhe distances fall below

the threshold. Precursors are constructed by defining mesabased on the statistical
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properties of the black points in the recurrence plots.
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Figure 5.6: Recurrence plots from the model for the pressigeals at (a)l, =
7.9m/s, (b) Uy = 8.4m /s, and (c)Uy = 9.0m/s. The threshold was defined
ase = \/5 where\ is the size of the underlying attractor in phase space
defined as the maximum distance between pairs of points isgu@ace at
the flow condition. The signal was embedded in a dimengjoa 8 with
embedding delay,,; = 1ms.

Shown in Fig. 5.6 are the recurrence plots obtained from tbéeihcorresponding
to chaotic, intermittent and periodic dynamics respebtivehe recurrence plot during
the chaotic regime is grainy whereas during instabilityythee composed of parallel
diagonal lines as expected and observed in experiments.rebuerence plot during
intermittency also compares well with the experiments antsists of black rectangu-
lar patches that appear in a near-random fashion. The p@sudefined earlier were
computed for the various flow velocities from stable operateading to combustion
instability and the results are shown in Fig. 5.7. They aemge forewarn the transition

to instability well before the amplitudes start to rise (Fgr(a)) just as in experiments.

An alternate way of quantifying the intermittency is by maasg the loss of chaos
in the measured pressure signals. Shown in Fig. 5.8 are shéigérom the model on
applying the 0-1 test for chaos (Gottwald and Melbourne 42@h pressure signals
obtained for various inlet flow velocities. The model shohattthe no lock-in regime
is chaotic and that there is a gradual loss of this chaos aainpg conditions approach
instability. The results obtained from the model compar# with the observed trend
in experiments which show that the regime of stable oparatiassified as combustion
noise is deterministic and chaotic. The model is thus seeayture the mechanisms of
onset of combustion instability; intermittency presagasbustion instability in a com-
bustor with a turbulent flow-field and quantifying this int@ttency enables precursors

to be constructed that forewarn instability.
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Figure 5.7: Variation of (a) the pressure amplitude levgls ) and precursors to com-
bustion instability obtained from the model through statéd recurrence
guantification: (b) The recurrence rai&R, (c) entropys and, (d) average
passage time,. These precursors fall at independent rates well in advance
of the actual transition to instability. The threshold wapkfixed at a value
e = 3000. The behaviour of these precursors are comparable to thmse o
tained from the experimental data from the bluff-body costbu

5.5 Concluding remarks

A simple phenomenological model was described to undeddtenonset of instability
in combustors operating in a turbulent flow environment. phenomenon of inter-
mittent burst oscillations observed in such combustorsthagubsequent transition to
combustion instability was qualitatively reproduced gsthe model. The instability
can be understood as a lock-on mechanism or synchronizaiareen the acoustic os-
cillator and the hydrodynamic oscillator. Comparison & fpectra obtained from the
experiments and the model shows that a subharmonic for€itng @coustic field in the

combustion chamber by the hydrodynamics is responsiblediabustion instability.

The various techniques that forewarn combustion instgliibm experimental mea-

surements were applied to the model to understand the igéaess of the model in
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Figure 5.8: Variation of the measure based on the 0-1 testifaos ) when applied
to pressure fluctuations from the model, as the mean flow WeEsare
increased 1.9 — 9.0m/s) towards combustion instability. The results are
comparable with the experimental data.

describing the physics of precursors. It was seen thatriegignals obtained from the
model show the loss of chaos seen in experiments and by guagtintermittency is

able to warn the onset of combustion instability well in atha
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CHAPTER 6

Instability as a loss of multifractality

As we have seen so far, the dynamic processes happening asa@mnbustion chamber
involve the coupled nonlinear processes which cannot beritdbesl by simple linear
techniques. In this chapter, we shall introduce the framkwb fractals and multi-
fractals in order to tackle this complexity. Using a techiidcknown as multifractal
detrended fluctuation analysis, the deviations of the akntoments of measured fluc-
tuations with time are computed, which can directly be egldb the fractal dimension
of the time signal. It is shown that combustion noise is nfraltital and that the onset
of combustion instability results in a loss of this multdtality. The rate of variation
of central moments decrease gradually towards zero adbilistés approached, which

can be used as yet another early warning signal to impenadimipgstion instability.

6.1 Background

The term ‘fractal’ is used to describe objects that have etifsaal dimension (Man-
delbrot 1982). Whereas classical Euclidean geometry degiissmooth objects that
have integer dimensions, structures in nature often teihe foactals because they are
wrinkly at all levels of magnification. Measures such as thpgrea or volume can-
not be defined for such objects since they depend on the stateasurement. For
instance, the length of a fractal curve increases when tbeisumade smaller because
additional details are now revealed. A logarithmic plottoé imeasured length of the
curve against the length of the ruler for such a curve wowd ghow an inverse power-
law; i.e., a straight line with a negative slope. This slopkich is a number between
one and two, is referred to as the ‘fractal dimension’ of theve. Thus, we see that
such curves occupy more space than a straight line whickeseal the length of the

ruler, but less space than a square which scales as the sdulaedength of the ruler.

The concept of fractals can also be used to describe compleantics that results

in fluctuations spread over multiple orders of temporal nitagie. A fractal process is



characterized by a broad-band power spectrum with an iey@wer-law, known more
popularly as thel/f spectrum (Montroll and Schlesinger, 1982; Schlesinge8719
since there is here an inverse relationship between fregusamd power. Similar to a
fractal curve, a fractal time signal also has a dimensiowéeh one and two. A frac-
tal time series also displays a property known as ‘scalerigmee’, which means that
features of the signal look the same on many different sadledservation (seconds,
minutes etc.). Mathematically, for a fractal time signat) = p(t)/c for some scal-
ing c and a constant/. Scale invariance thus relates the time series acrosspteulti
time scales. Such a dependence on multiple time scaless@swd broad profile of
responses in the amplitude spectrum representative ofditat are present at these
time scales. On the contrary, if the process can adequagelgdresented in terms of
one or a few discrete time scales, then the signal would havarglitude spectrum
with discrete, narrow peaks. In the next subsection, weshitiw how the presence of

fractality is related to the memory of a time signal.

6.1.1 Statistical description of a time signal

Statistical analysis of time signals involve obtaining digribution of their fluctuations
(Gaussian, Poisson, Levy etc.) or representing this digian in terms of representa-
tive measures computed around the most likely measurematrd (central moments).
Fluctuations that are fractals, but appear noise-likdedifom noise in that they do
not satisfy the statistics of classical random variabledieWas the central moments
of a random variable are bounded in time, the central monwdsfractal signal di-
verge with time at least over a short range (Mandelbrot 19T#)s can happen—for
instance—when the measurement values represent vasdiah in time and space,
which makes the signal non-stationary. A signal is nonestaty, if the central mo-
ments vary with time, or in other words, there is a variatiothie underlying distribu-
tion of data values. As an example, unsteady pressure vatagsred during confined
combustion in a convecting flow-field are non-stationamycsithe pressure measure-
ment at any location at a given instant depends not only osspre values at previous

instants, but also on the pressure values at other locatidhe flow-field.

In the description of non-stationary time signals, claasmeasures such as mean

or variance are not very useful since they vary with timedadt they are character-
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ized by examining how the moments depend on the time intenel which they are
evaluated. For instance, the dependency of the standaratidevof the time signal on
time interval is encapsulated in a parameter called thetlxsonent// (Hurst 1951).

It measures the amount of correlation or the memory in a tierees and is related
to the fractal dimension D of the time seriesias= 2 — H (Basingthwaightest al,,

1994). The concept of structure functions introduced bynkagorov (Kolmogorov,
1941; Frisch, 1995) is a generalized version of this ided¢chvbxplores scaling rela-
tionships between the variations in the moments of meadluetations and the time

interval of measurement.

A time series is called persistent (anti-correlated) ifrgdéavalue is typically (i.e.,
with high statistical preference) followed by a large vadunel a small value is followed
by a small value (Kantelhardt, 2011). In other words, theaigetains a memory of
what happened in the previous time step and has an increasiedhbility of the next
step being in the same direction—such signals have a trardh persistent signal, the
Hurst exponen# lies between 0.5 and 1 and the strength of the trend increadés
approaches one. An anti-persistent (correlated) timesewsn the other hand, is one in
which a large value is typically followed by a small valuedansmall value is followed
by a large value. Such signals have a tendency to revert toatn value. For anti-
persistent signals, values éf lie between 0 and 0.5. The strength of mean reversion
increases a#&l approaches zero. For time signals that are persistent iepensistent,
fractal scaling law holds in at least a limited range of ss@antelhardt, 2011). For an
uncorrelated time series, the Hurst exponent is 0.5. Thagpgcted, since the variance

of fluctuations in a memory-less diffusion process shouédeskinearly with time.

The Hurst exponent also determines the scaling propetfttitbe dractal time series.
If p(t) is a fractal time signal with Hurst exponeHt, thenp(ct) = p(t)/c? is another
fractal signal with the same statistics (Westal., 2003). Algorithms that compute
the Hurst exponent are mostly based on this scaling prap@ttis scaling behaviour
typically has an upper and a lower cut-off that is dependernthe system dynamics.
Detrended fluctuation analysis (DFA) (Peeigal, 1994) provides an easy approach to
characterize fractality in a given time series data. Thhoairgevaluation of the structure
functions, correlations in the data are sought for by comguhe Hurst exponent which

can then be related to the fractal dimension of the time serie
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6.1.2 Multifractality and multiplicative processes

Many time signals exhibit a complex scaling behaviour traatrot be accounted for
by a single fractal dimension. A full description of the seglin such signals involves
multiple generalized Hurst exponents, resulting in interan subsets of varying frac-
tal dimension (varying Hurst exponents) producing whaersied a ‘multifractal’ be-
haviour (Frisch and Parisi, 1985). In other words, fluctuadiin a time signal that
have different amplitudes follow different scaling rul@he method of DFA can be ex-
panded to explore multifractality in a time signal and trehtéque is called multifractal
detrended fluctuation analysis (Kantelhagtlal,, 2001, 2002). The procedure involves
computing generalized Hurst exponents that describe thlengcof central moments
for various negative as well as positive orders of the momgithat have been appro-
priately scaled. For instance, standard deviation hasdar of two and its scaling with
time interval gives the Hurst exponent. For a multifractghal, the generalized Hurst
exponents would have different values for different ord#rthe moments. Through
a Legendre transform, this variation in generalized Huxpbeents at different orders
can alternately be represented as a spectrum of singetafiti), in terms of the new
variablea which is conjugate tqg. A plot of f(«) for various values of is termed the
multifractal spectrum, the width of which provides a measwoirthe multifractality in
the signal (see Appendix B for details on implementatior).eXcellent description of

multifractal processes may be found in Paladin and Vuldiz®87).

The presence of multifractality is an indication that thare multiplicative pro-
cesses involved in the transfer of energy across variowessoales (Sreenivasan, 1991).
Provided one accepts Taylor’s frozen flow hypothesis (Tayl838), the argument can
be extended to hold for energy transfer across variousadsaiales as well. The en-
ergy transfer at turbulent flow conditions involve a muitiptive Richardson’s cas-
cade (Richardson, 1922) in the inertial subrange from thegnal scale down to Kol-
mogorov scale. As a consequence of this cascade, we shqédtehe multifractality
to persist even in the presence of heat addition. Howewenitset of combustion insta-
bility transforms the dynamics from one characterized byudtiglicity of scales to one
dominated by a few discrete time scales associated withatmeation of large-scale
coherent structures in the flow field. It remains an intengspiroblem to identify how

the interaction of turbulence with the acoustic field of afoment (augmented by
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heat release) transforms such an energy transfer acroiplmtime-scales to transfers
that are dominated by a few time-scales. This can happenirgtance—through an
inverse cascade (Kraichnan, 1967), wherein the energyedrtialler scales gets trans-
ferred to progressively larger scales. The formation ajdascale coherent structures
during combustion instability possibly hints at the preseaf such an inverse cascade
co-existing simultaneously with the usual direct cascde dissipates energy at Kol-

mogorov scales.

6.2 Results

The pressure measurements acquired from the combustoigdsteble operation and
after the onset of combustion instability are shown in Fid. 6rhe fluctuations prior
to instability (Fig. 6.1(a)) are seemingly random and digphn amplitude spectrum
which is boradband (Fig. 6.1(c)). This has traditionallgbelassified as combustion
noise in the literature. After the onset, the amplitude spet has sharp, discrete peaks
(Fig. 6.1(d)) distinctive of combustion instability. Thenplitudes of these oscillations
are fairly high compared to combustion noise suggestinghaeulying lock-in mecha-
nism. Such a lock-in may happen for instance between theodydamic fluctuations
associated with periodic vortex formation and the fluctuadiof the acoustics in the
confinement. It should be mentioned that although the spctif the signal prior to
instability appears to have a shallow peak near the ingtafiéquency, no information
can be gleaned as to how close the operating conditions acgrtbustion instability, or
which of the many frequencies that have comparable peaks isgectrum would be the
dominant frequency at instability. Therefore, the fragtaperties of signals are sought

to obtain precursors to combustion instability, by compgthe Hurst exponents.

In order to demonstrate the utility of Hurst exponent in iifgimg the dynamics,
a comparison is made of three different time series dataz@)issian white noise,
(i) combustion noise acquired from a bluff-body stabitizeonfiguration ¢ = 1.1,
Re = 1.83 x 10%), and (iii) synthetic periodic data. Synthetic perioditalalong with
Gaussian white noise represent the limiting cases on theesailf Hurst exponent for
an anti-persistent (correlated) signal. The instabiliggtiency for the data presented at

combustion instability (Fig. 6.1(b)) wakl9H . Hence, the time scales for the compu-
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Figure 6.1: Unsteady pressure signals acquired from tHeldaly stabilized configu-
ration: (@)¢ = 1.1, Re = 1.8 x 10%, (b) ¢ = 0.7,Re = 2.8 x 10%, showing
transition from combustion noise to combustion instapilitow amplitude,
aperiodic pressure fluctuations get transformed to higHitudp, coherent
oscillations on increasinge. There is a transition in the frequency spec-
trum from (c) a broad profile with shallow peaks to (d) a speotwith
sharp peaks. The bin size of frequency in calculating the W&30.3H -.

tation of Hurst exponent was varied betwe&enl16ms which correspond approximately
to 2-4 cycles of oscillations at combustion instability.r Hoe sake of comparison, the
frequency of the synthetic periodic data was choselba#l » so as to be in the vicinity

of the dominant frequency of the data presented at comlyuistsbability.

The Hurst exponents were estimated for the four time sigimaia the variation
of the structure functionsF{¢) at different time scales of measuremeun) (shown in
Fig. 6.2). White noise has a Hurst exponent of 0.5, charatiteof a diffusive Brow-
nian process. This is because the variance scales lineéHytime for white noise.
Hence, the variation of the standard deviation with timejclwhs also the Hurst ex-
ponent, would have a slope of 0.5 when plotted on a logarittsoale. The periodic
data has a slope close to zero because the variance of theafioos must necessar-
ily be bounded and remain constant over a time period. Theesbd the combustion
noise data however, lies between the two limiting condgitor a persistent time sig-

nal. Combustion noise thus represents an anti-persistene(ated) process since the
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Figure 6.2: Illustration of fractal features of combustmise through Hurst exponent.
The combustion noise data presented in Fig. 6.1 are seandmiidst those
corresponding to Gaussian white noise and periodic osoilia. The inter-
cepts have been removed from the abscissae and dottedriin@®aided to
guide the eye. Uncertainties reported correspond to stdmaleors in slope
estimation.

Hurst exponent is between 0 and 0.5. The fractal dimenBidar such a process lies
between 1.5 and 2. The Hurst exponent obtained for the peesgynals at combustion

instability (Fig. 6.2(b)) was 0.029 and is not shown in thet fibr the sake of clarity.

The multifractality of the three signals presented in Fig2 was investigated by
computing the generalized Hurst exponents, the resulthafware shown in Fig. 6.3:1
(a-c). The high and low amplitude fluctuations in differane intervals (v) are pref-
erentially selected by varying the order of the structurefion (). Whereas a positive
order > 0) selects high amplitude fluctuations, a negative orget ()) would select
low amplitude fluctuations. We see that the structure fnsti(?) remain parallel
for Gaussian white noise. This invariance of the slope méaetsthe fluctuations are
uncorrelated at all amplitudes, and thgt has an identical linear variation with time
interval at all orders. For the periodic data, the valueshefiiurst exponent lie fairly
close to zero at different orders because there is just dediinge scale associated with

the fluctuations, thereby making the structure functionsioed in time.
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Figure 6.3: I. The variation in structure functioh¥ at different orderg; as the time
interval w is increased (marked as hollow circleg for ¢ = 5, squares
(O) for ¢ = 0, and filled circles ¢) for ¢ = —5). The ordinates are shown
on the same scale to represent the variations more clearMultifractal
analysis of different signals wherein the singularity ¢peuo f («) is plotted
as a function of the singularity strengthwhich is comparable to the Hurst
exponent. The data presented correspond to (a) monoftextaseries, (b)
Gaussian white noise, (c) combustion noige<(1.1,Re = 1.8 x 10%), and
(d) periodic dataf = 250H z).

Now if combustion noise were monofractal; i.e., charaztatiby just a single frac-

tal dimension, the time series should show a behaviour airuol that of white noise
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with the same value for all the generalized Hurst exponaikeit with a slope dif-
ferent from 0.5. However, for combustion noise, we see awifice in the slopes of
measured fluctuations at different values of the exponéiits 6.3:1(b)). This varia-
tion in the Hurst exponents withis a direct consequence of the multifractal nature of
the time series (Kantelhardt, 2011). The high- and low-atenghé fluctuations present
in the time series scale differently, which results in diiet values of/¢ at different
ordersq. The multifractal spectrum of these signals is shown in Bi§:ll (a-c). The
spectrum is broad for combustion noise whereas it is cledtaround a point for the
white noise and periodic data. For white noise, we see tleasplectrum is concen-
trated around a value of 0.5 as expected. The clusteringisdrzero for the periodic
data which indicates the absence of scale invariance fowgiertime signals, because

fluctuations happen only at one time scale.

Multifractality in a time series can come about in two wayksd(ie to a broad prob-
ability distribution of the data points, e.g., a Levy distriion, and (ii) due to differ-
ent long-term correlations of the small- and large-scalgdiations (Kantelhardit al.,
2002). An easy way to identify the presence of correlationa fime signal is to ran-
domly shuffle its data values (West, 2006). Whereas muttifility due to correlations
are removed by randomly shuffling the series, it persisth@nformer case even af-
ter shuffling. It is interesting to note that even when thetifrattality arises due to
long-term correlations, the probability density functimiithe time signal over a finite,
fixed sampling duration can be a regular distribution witltéimmoments (for instance,
a Gaussian). It is only when the sampling duration is vaited 6ne observes the non-

stationarity of the signal and divergence in central moment

The source of multifractality in the data acquired duringhboistion noise was ex-
plored by randomly shuffling the acquired data as per thegquho® suggested by West
(2006). The original and the randomly shuffled surrogatessre time-series from
the combustor are shown in Fig. 6.4(a,b). A zoomed in viewheffirst 500 points
in the series is shown in the inset. Whereas weak correaaoa visible in combus-
tion noise data, any such correlations are lost on randoml§flsxg the data, making
it memory-less. The distribution of the combustion noistadand the surrogate data
from the bluff-body stabilized combustor is shown as a lgsam in Fig. 6.4(c). It was
verified to conform to a Gaussian distribution using the Kadgmrov-Smirnov test for

normality (Massey, 1951), with the null hypothesis for M@atssianity rejected at%

68



(a) 2000 (b) 2000

500 500
1500 S JW\]V\M‘W\/\ 1500 - o
< 1000 -500 = 1000 ~
Q_¢ 0 . 0.05 Q? 5000 . 0.05
—= 500 | ‘ — 500
L ‘ it AL “ i d
ON T N ' ( 0
-500 -500
0 1 2 3 0 1 2 3
t(s) t(s)
(c) 2000 (d) 1
0.5 moo
Oooo
+ 1 ()
q H —~
1000 S o0
O h %,
-0.5
= Shuffled data %
-1 o Combustion noise
0500 0 500 0 0.5 1
P (Pa) o

Figure 6.4: Effects of random shuffling on combustion noiaead Time signals of (a)
the original combustion noise data and (b) the randomlyfidtufiata. The
first 500 points in both data sets are shown in the inset. Vdisedata cor-
responding to combustion noise display correlations witlakvperiodicity,
the shuffled data is truly random with no memory. (c) Histogishowing
the distribution of the data pointsV() in the two signals oveBs. It has a
Gaussian profile. Hence, we see that although the data hasssi@a dis-
tribution, it can arise out of deterministic dynamics. (d) Mustration of
the presence of long-term correlations in the combustiasendata. There
is a loss of multifractality on randomly shuffling the dataresponding to
combustion noise because of a loss of memory among the daits o
the signal. This shows that the multifractality is due toretations in the
signal and not merely a result of a broad profile in the prdigldensity
function for the values in the time signal. Such a loss ofalation strength
is referred to as a loss of complexity of the system.

significance. Hence, even when the distribution of the aegusamples is a Gaussian,
the dynamics can be complex and multifractal. The mere poesef correlations in the
measured data suggests that it is incorrect to term theiagsd@henomena as ‘com-
bustion noise’. Further, as we have shown in the previouptehs, fluctuations termed
combustion noise are the result of deterministic dynamidtseoglobal system compris-
ing flow, combustion and the chamber acoustics. In other syaxdmbustion noise is
deterministic chaos. It is probably the random appearandé¢tee Gaussian distribution

of the measured pressure fluctuations that prompted részarto adopt a signal plus
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noise paradigm in analyzing the phenomena.

Therefore, we feel that a more suitable term to describehlea@mena is to term it
combustion chaos rather than combustion noise. In studyangpustion noise and its
transition to combustion instability, it may hence be ingent to adopt the traditional
signal plus noise paradigm, which currently is often imfcassumed. To illustrate
this point more clearly, the multifractal spectrum of thentustion noise and the shuf-
fled series is shown in Fig. 6.4(d). Whereas the generalizgdtidxponents show vari-
ation at different orders as illustrated by the broad spettthey are clustered around
0.5 for the shuffled data, indicating that it has degeneratieda noise-like data. Thus,
although techniques such as computation of the FFT or ahtpihe probability density
function may suggest a noise-like behaviour, a deeper sisaliging nonlinear fractal

analysis can show signs of determinism, if present.

According to a conjecture by Kraichnan (1967), if energyniected into the flow
at a constant rate at some intermediate scale, an inversadeawill take place until
the largest scales available are attained. The processrdfugiion instability involves
a periodic heat release rate, wherein the fluctuations ihreézase rate are in proper
phase relationship with the perturbations in the acousgssure field inside the con-
finement, thereby satisfying Rayleigh’s criterion (Raglei1878) which is a necessary
condition for self-sustained pressure oscillations. Tineas layer in a turbulent flow
is characterized by several instability frequencies spoading to the different sizes
of vortices (Winant and Browand, 1974). On the interactibmaustic waves with
the shear layer, the vortex size can be stabilized when dtuéncy of these waves
match the shear layer instability frequencies (SchadowGutdhark, 1992). Hence, we
suspect that the formation of large-scale coherent vartatehe onset of combustion
instability as reported in the literature (Rogers and MakiB56); Parkeet al.(1979);
Pitz and Daily (1983); Smith and Zukoski (1985); Hegeteal. (1983); Poinsott al.
(1987); Yuet al. (1991) to name a few) is due to the establishment of an invease
cade with the energy being injected into the flow through castibn at scales defined
by matching of the acoustics with shear layer instabiliggfrencies. Further, a theo-
retical analysis of nearly incompressible flows in the pneseof heat addition (Zank
and Matthaeus, 1990) indicate the possibility of such aersw cascade, wherein en-
ergy can get transported to the long-wavelength acoustidesiérom smaller scales,

provided the Mach numbers are low.
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Figure 6.5: (a) Variation of the Hurst exponditwith Re. The Hurst exponents drop
well before the amplitudes start rising in the combustorg.(#.3(a)). The
error bars correspond to thestintervals on the computed values. Thresh-
old values (shown as horizontal dotted lines) are nominsdityto 0.1 to
indicate the transition. This threshold is user-defined isnddependent
of the geometry of system or the fuel composition unlike thegpktude
measurements. (b) The loss of multifractality at the on$etombustion
instability where the spectrum was plotted for the initiatidinal points in
(a). The time series from which the spectrum was obtainedesame as
that shown in Fig. 6.1(a,b).

It has been possible to successfully predict and prevenbastion instability in the
two combustor configurations using the Hurst exponent asadg warning measure;
the results from the studies without control are shown in Bi§. AsRe is increased,
there is smooth decrease in the value of Hurst exponent deaxa@aro. This decrease
happens well before the amplitude starts rising in the catdnfsee Fig. 4.3). Hence,
by defining a suitable threshold for the Hurst exponent sefiity distant from zero
(say, 0.1), we can track the proximity of the system to infitgland take suitable con-
trol measures. The results present the average value of ekpsnent computed over
segments ranging from roughly 2 to 4 acoustic cycles of tretaatly pressure data
(8 — 16ms) acquired oveBs at a sampling rate of0kH z. However, it is possible to
obtain comparable results even with shorter time signalso,Ahe threshold is inde-
pendent of the system configuration since it merely is arcatdr of the proximity of

the system to an oscillatory regime.

The loss of multifractality in the signals at the onset of toistion instability is
illustrated in Fig. 6.5(b). The plot clearly shows the spat diminishing to a point at
the onset of combustion instability. This loss of multifi@ty is due to the predomi-
nance of a single time scale that dominates the dynamicsa Faictal signal, such a

loss of variability in scales observed as narrowing of tleg@lency spectrum is termed
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a ‘loss of spectral reserve’ (West and Goldberger, 19873.dombustor, since this loss
of spectral reserve happens in a gradual manner when thepa are varied, it can

serve as an early warning signal to an impending combustigtability.

It should be noted that the flow is still turbulent after thentmstor becomes un-
stable. The power spectrum (Fig. 6.1(d)) also shows thatdnéributions from time
scales other than the instability frequencies and theitipies, though small, are still
present. The effect of turbulence can also be seen in the latamuof the amplitude of
pressure fluctuations at instability. It is this turbuletizat results in a small range of
in the multifractal spectrum during combustion instailidowever, the range af is
reduced significantly when compared to regimes of combuistase and is clustered
around zero for the instability dominated signals. Thisaqude of scales leads to a loss
of multifractality. A signal is multifractal when contriltions of different time scales
cannot be ignored without missing out on significant detaflthe phenomena. Dur-
ing combustion instability, it is entirely acceptable toxemer the dynamics as a single
time-scale problem. However, in the regions prior to inditgbthe contributions of
other time-scales cannot be ignored without missing kegaspf the dynamics. Also,
ignoring the contributions of these time scales—as we haga-s-results in the loss of

predictability of an impending instability.

6.3 Concluding remarks

Traditional analysis and modeling of combustion noise a ageits transition to high

amplitude combustion instability often neglects or avesagut the unsteady irregular
fluctuations observed in the measured data, or treat thenstxlaastic background.
A detailed analysis of the irregular fluctuations can previtformation that is of diag-

nostic as well as prognostic value. Combustion noise igohetéstic chaos and results
from the coupled nonlinear interaction amongst turbulenoenbustion and the cham-
ber acoustics. Hence, the use of the term noise to descrbpréssure fluctuations
inside a combustor during stable operation requires chcefisideration as the mea-
surements do not display features one would expect fromchasbic random process.
Moreover, these fluctuations contain useful informaticat tan help forewarn an im-

pending instability.

72



The pressure fluctuations during combustion noise displaitifinactality which
shows that multiple spatial/temporal scales are involvethe energy transfer. This
further draws attention to the possibility of an inverserggecascade in the inertial
subrange. There is a gradual loss of multifractalilty fareases in Reynolds number
towards combustion instability. Such a loss of spectramascan act as an early warn-
ing signal that predicts combustion instability well befdhe amplitudes start to rise
in the combustor, in other words, well before the actualibtalonargins are reached.
Moreover, the superiority of the method is clear on reafjzinat techniques such as
FFT that rely on a frequency-domain analysis often canredipt the proximity of the

operating conditions to combustion instability.

73



CHAPTER 7

Dynamics of intermittency

In this chapter, we will see that intermittent burst ostidlas are also observed in the
combustor on increasing the Reynolds number further pastitons of combustion in-
stability towards the lean blowout limit. Intermittent dymics is thus a typical feature
in the dynamics of turbulent combustors—even more so thait Gycle oscillations.
The chapter aims to establish that such intermittent bansse naturally in systems
composed of two attractors through the formation of honmoclorbits in the phase
space of the global system dynamics. It also aims, througlyaing the recurrence
properties of these intermittent states, to provide a syatie way to inspect the pres-
ence of such homoclinic orbits from a measured time signaklly, the flame dynam-
ics of the intermittent states observed prior to lean blawall be investigated using

high-speed” H* chemiluminescence imaging.

7.1 Background

The phenomenon of intermittency has received a lot of attenih the description of
deterministic dynamics arising from pattern forming coexgystems. Through a study
of simple dissipative dynamical systems, Pomeau and Male¢¥980) presented
three models of intermittency classified as type I-lll to atdse the routes of transi-
tion from a stable periodic behaviour to chaos. Even moretias of intermittency
were discovered later on such as chaos-chaos intermitt@iciardson, 1993) (eg:
on-off intermittency (Ott and Sommerer, 1994) and in-ot¢timittency (Covagt al,
2001), crisis-induced intermittency (Grebagial.,, 1987), type-X intermittency (Price
and Mullin, 1991) or type-V intermittency (Bauet al, 1992). There has also been
a number of experimental observations (Hammeteal., 1994; Argoulet al,, 1993) of

intermittent dynamics in the literature.

As we have seen so far, interaction of sound with a reactingutent flow pro-

vides us with yet another dynamical system where intermgitds observed—seen
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Figure 7.1: (I) Typical unsteady pressure measurementglgrmbrresponding ampli-
tude spectra acquired during the dynamically different flegimes from
the combustor. (a) Combustion noiske(= 2.19 x 10%, ¢ = 0.93), (b)
intermittency prior to combustion instability?¢ = 2.42 x 10*, ¢ = 0.83),
(c) combustion instabilityRe = 2.74 x 10%, ¢ = 0.72), (d) intermittency
prior to lean blowout Re = 4.95x 10*, ¢ = 0.39) and (e) near lean blowout
(Re = 6.92 x 10%, ¢ = 0.27).

as intermittent bursts of pressure oscillations that emé@m a chaotic background.
Shown in Fig. 7.1 are the various qualitatively differemtgss observed in the unsteady
pressure measurements from the combustor at progressieedasing flow Reynolds
numbers (decreasing equivalence ratios). Observe the weidation in amplitudes
in the pressure signals shown in Fig. 7.1:1(b,d). We seetti®idynamic transition
from low-amplitude fluctuations (Fig. 7.1:1(a)) to high-phtude combustion instability
(Fig. 7.1:1(c)) happens via such a regime of intermittemiliions where the pressure
fluctuations rise in bursts of periodic, high-amplitudeitbstons from a background
of low-amplitude, aperiodic fluctuations. Correspondyngthe spectra of the pressure
signals show a gradual emergence of peaks as the dynamiasaapps combustion

instability (Figs. 7.1:ll(a-c)).

Further increases in Reynolds number after the onset of gstiain instability leads
to the occurrence of intermittent oscillations again (FFig.:1(d)) suggesting yet another

transition in the combustor dynamics. These intermittsotli@tions persist for a range
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of Reynolds number until the pressure signals eventuallysfiorm to low-amplitude
fluctuations (Fig. 7.1:1(e)) before the flame eventually®daut. The strength of the
peaks in the pressure spectra also start diminishing asg/ttecs transitions towards

intermittency and lean blowout (Figs. 7.1:11(d,e).

From the figure, it is clear that intermittency representsaadition regime in the
dynamics of combustors prior to large-amplitude combustigtability as well as lean
blowout. Also, itis evident from the pressure spectra (Fid:ll(a-e)) that the dynamics
of these intermittent oscillations involve time scalesantinan those of the confinement
acoustics. For instance, although it is a reasonably gopdogmation to consider
combustion instability as dynamics happening over a sitigie scale (and its multi-
ples), at least one additional time scale is required tordesthe modulation of the
pressure amplitudes from high to low values and back to lowesobserved during

regimes of intermittency.

Recently, Kabiraj and Sujith (2012) showed that intermitieis possible in simple
thermoacoustic systems prior to lean blowout of the flames flime was seen to be
highly unsteady and wrinkled during such intermittent negé with irregular lift-off
and reattachment. Further, the intermittent signal wasacherized by high-amplitude
chaotic oscillations that emerged from a quiet backgroundhe case of combustors
in a turbulent flow field, we observe that the signals displagt¥s termed an intermit-
tent bursting phenomenon—nbursts of periodic oscillatibas appear in a near-random
fashion amidst aperiodic irregular fluctuations. As hasist®wn in previous chapters,
the dynamics of such systems can be thought of as being cetjpbsvo subsystems
or attractors that operate on different time scales; aasusthich is characterized by
the local speed of sound and hydrodynamics which operatesaotroader range of
time scales defined by the local flow speeds. In what followes sthall probe deeper

into the dynamic aspects of such intermittent burst ogmlte.

7.2 Intermittency and homoclinic orbits

A homoclinic orbit is one in which the unstable manifold of yplrbolic equilibrium
state of the system merges with its own stable manifold. Qlth a close associa-

tion between homoclinicity and intermittency has been shewperimentally in the
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literature (Richettet al., 1986; Herzekt al, 1991; Parthimost al), identification of
homoclinic orbits from a measured time series has provedfiauli task. In Fig. 7.2,
the evolution in phase space of an intermittent burst is shimwthe pressure signal
acquired prior to lean blowout. The trajectory is seen toaut of the center to the
unstable orbit and then spirals back in through the planesaiflations, which could
possibly represent a homoclinic orbit. However, the existeof such orbits cannot be
concluded by a mere visual inspection of the phase spaceefbine, we propose a hew
technique to infer the presence of homoclinic orbits in thage space of the global

attractor.
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Figure 7.2: A portion of the burst signal of (a) the intermiit signals prior to combus-
tion instability (Re = 2.57 x 10%,¢ = 0.89) and (b) the intermittent signals
prior to lean blowout Re = 5.14 x 10%*,¢ = 0.37). The corresponding
phase portraits (in 3D) are shown in (c) and (d) respectivEhe embed-
ding dimension was chosen to g = 10 with 7,,, = 1.0ms for both the
signals. The evolution of burst oscillations in phase spasslts in the ape-
riodic oscillations spiraling out into high amplitude déions and then
again spirals back into the low amplitude aperiodic dynamic

The circulation time of trajectories in phase space for hdmix orbits are domi-
nated by their passage time near the saddle fixed point. ifilmgsi$ highly sensitive to
external perturbations and the distribution of passagedifar a given initial distribu-

tion of points near the saddle point is given by the expres@itnimes, 1990):
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whereA(T) = o K 3
point, « is the noise level rmsj is the size of the neighbourhood influenced by noise.
P(T) is a skewed distribution with its peak value different frone tmean and has an
exponential tail (Holmes, 1990) 5 — oo (P(T) ~ \/2—6_)\3/2(3‘”). This behaviour

is independent of the details of the initial distributionzoée and Holmes, 1991). Itis
known that the distribution of the laminar phases (quiegriyglic regimes) for both
type-Il and type-Ill intermittencies have an exponental {Klimaszewska and Ze-
browski, 2009). Inspection of the recurrence plots of thelsostor pressure signal ac-
quired during intermittency is inconclusive; however, tetected features correspond
to type-Il or type-Ill intermittency. As the analysis deibed above illustrates, systems
exhibiting type-Il or type-Ill intermittency are charadtged by homoclinic orbits in the

underlying phase space.
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Figure 7.3: Histograms of the number of visits and the daratf time spent trapped
in the low amplitude aperiodic regimes for (a) the interemttsignals prior
to combustion instability Re = 2.57 x 10%,¢ = 0.89) and (b) the inter-
mittent signals prior to lean blowouRe = 5.14 x 10%,¢ = 0.37). The
data sets correspond to pressure signals acquired for aaiuoh 1.5s at a
frequency ofck Hz. A skewed distribution with an exponential fall-off is
visible in both the histograms which is a distinctive featof systems that
have homoclinic orbits in the phase space of dynamics. Anmsptial fit
to the tail is shown as gray lines over the histogram.

The distribution of the passage time of the dynamics in lowlé&ode regimes can
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be estimated from a recurrence plot as the frequency disiito of the vertical lines
(or horizontal lines since the matrix is symmetric) in thewgence plot. Histograms
of this vertical length frequency distribution for the twigsals were plotted in Fig. 7.3
to understand the variation of the frequency of visits aswation of the trapping time.
The histogram reveals a skewed distribution with its pedkltd mean and has an

exponentially decaying tail.

The presence of such an exponential tail is thus indicativeomoclinic orbits in
the system (Stonet al,, 1996). The trajectory of such a homoclinic orbit is repdbte
injected near the stable manifold of a saddle node as a i&dhik perturbations in the
turbulent base flow. Thus, recurrence quantification semgesn efficient tool for the
inspection of homoclinic orbits in the phase space of théesyslynamics. In the next
subsection, we will revisit our current understanding @& tlame dynamics near lean

blowout and analyze them in terms of the observed interntgte

7.3 Intermittent flame dynamics near lean blowout

In a comprehensive review of bluff-body stabilized flamesarbhoguest al. (2009)
showed that spatially and temporally localized extincesents—manifested as holes
in the flame sheet—occur sporadically near lean blowout.fidggiency of such events
increase as lean blowout is approached. Increased presetioee-localized and in-
termittent events in the acoustic data near lean blowoutalgsreported by Nair and
Lieuwen (2005) for three combustors with pilot, swirl andfbbody stabilized flames

respectively.

We have seen that intermittent dynamics corresponds teltoadized behaviour of
pressure oscillations with high-amplitude bursts of dattdns appearing in a measured
pressure signal in a near-random manner. In order to uraher$tow the measured in-
termittency translates to unsteady flame dynamics in theébostor, high speed images
with C H* filter were acquired simultaneously with pressure measentsmat an oper-
ating condition within the intermittent regime observebpto lean blowout (Fig. 7.4).
The amplitudes vary over a wide range from high to low amgkwu (Fig. 7.4(a)) and
the zoomed portion of the time signal clearly displays thegokc and the aperiodic

regimes in the signal (Fig. 7.4(b)). The instantaneous aaatow the flame gradually
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Figure 7.4: (a) Unsteady pressure signal and a sequenaaeebfisight integrated in-
stantaneous flame images acquired at the intermittent gteteto lean
blowout in the combustorfe = 5.14 x 10*,¢ = 0.37). (b) A zoomed
portion of the signal reveals aperiodic segments amidsbgierdynamics.
(c) The corresponding high speed images show aperiodiclieint of the
flame from the upper lip of the bluff-body and subsequenttaeament.
As a result of this detachment, there is a decrease in theréleased and
the pressure signal loses its periodicity and the amplgutderease. The
signal eventually gains amplitude and periodicity upon #aeattachment.
This appearance of bursts of periodic oscillations in a-n@adom manner
is a dynamical state termed intermittency. The outline eflihuff-body is
shown for the ease of visualization.

disappearing (Fig. 7.4(c): i-iii) from the upper portion thie bluff-body, remains in
the same state for a short time (Fig. 7.4(c): iv-vi) and ewalhy reestablishes itself on
the upper portion of the bluff-body (Fig. 7.4(c):vii-ix). N&n the flame detaches from
the upper portion of the bluff-body, the corresponding pues signal loses its period-
icity and becomes aperiodic due to the lack of sufficientfiasned energy release to
acoustics from the unsteady heat release. The signal igseegain periodicity when

the flame reattaches which further corroborates that itasutisteady heat release that

80



sustains the periodic oscillations.

The state of intermittency in the pressure oscillations ttars directly be linked
to aperiodic detachment of the flame from the flame holdentiegun an insufficient
driving of the oscillations in the combustor. This insuféiet driving can be envisaged to
result from the flame detachment or extinction or even duled@tesence of holes in the
flame sheet due to high turbulent strain rates. The chaizatien of the intermittency
in the measured signals hence allows for an indirect cheniaation of the unsteady
flame dynamics near lean blowout reported widely in thediigne and can therefore be

utilized to provide precursors that forewarn an impendilogvout in the combustor.

7.4 Concluding remarks

Intermittent bursts characterized by periodic high amgkt oscillations amidst irregu-
lar low amplitude chaotic fluctuations are produced whenlautent flow interacts with
the acoustics of a confinement forming dynamic objects knasvnomoclinic orbits in
phase space. Recurrence plots provide a convenient anttgtia@ descriptive tool to
inspect and identify the presence of a homoclinic orbith@éghase space by measuring
the amount of time the system lingers around the low amgifluicttuations. A skewed
distribution of passage times with an exponential tail isstinctive signature of sys-
tems with a homoclinic orbit; i.e., the trajectory is refety injected near the stable
manifold of a saddle in the presence of small perturbati®tserving the flame images
close to lean blowout identifies the aperiodic detachmefiaafe from the bluff-body
as the source of intermittent burst oscillations. Thisnmigent detachment reduces
the driving of the acoustics by the unsteady heat releaseesult of which the pres-
sure oscillations lose their periodicity and amplitude esrdown resulting in turbulent

aperiodic fluctuations.
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CHAPTER 8

Is combustion necessary for intermittency?

In this chapter, we show that intermittent burst oscillasi@re a typical feature of tur-
bulent flow-sound interaction, even in the absence of cotihu$he onset of self-
sustained oscillations in a turbulent pipe flow across aficeriis investigated in a
whistling apparatus. Analysis of measured pressure fltiongreveals that this emer-
gence of order from turbulence happens through an inteateditermittent regime
characterized by bursts of periodic oscillations that appe a near-random fashion
amidst the background chaotic fluctuations. The intergdBature is that these inter-
mittent bursts correspond to a frequency distinct from thal foscillatory state as the

boundary condition at the orifice exit undergoes a transiiothe onset of whistling.

8.1 Introduction

Pressure fluctuations in unsteady flows are classified asisoypseudo-sound depend-
ing on whether the underlying pressure field is propagatimgpa-propagatingd). The
pressure variations in a sound field (acoustic waves) are dependent on the loeatisp
of soundc, via p’ ~ O(pocou), Wherep, is the mean flow density andrefers to the
typical magnitude of the local flow velocity. On the other Hathe local variations
in pressure due to a pseudo-sound field vary’as: O(pyu?), thus independent of
the sound speed. When an unsteady flow passes through a ocoerindoth forms of
pressure fluctuations are induced and these fluctuationsharacterized by a multi-
plicity of time scales associated with local unsteadineslsscoustic wave propagation.
When one of the local hydrodynamic time scales matches amsticdime scale, self-
sustained periodic oscillations, which are difficult to trohin practice, are established.
Screech in jets with shocks, edge tones, howling of ejectandty noise, whistling in

pipes (pipe tones) are some such examples of flow-inducekbtisas (?).

In this chapter, the mechanism underlying the transitiomfa turbulence-dominated

state to a state dominated by periodic dynamics in a systénouticombustion will be



illustrated through experiments and theoretical argumefithis emergence of order
(periodic dynamics) from turbulence is contrary to the $raans often encountered in
hydrodynamic flow-fields where an increase in the Reynoldsber results in a transi-

tion from periodic oscillations to turbulenc®@)(

8.2 [EXperiments

Motivated by the pioneering work on pipe tones by Anders#),(we investigate the
multi-scale temporal dynamics of turbulent flow-sound iattion in an experimental
setup consisting of a pipe of length= 600mm and diameteD = 50mm terminated
by a circular orifice of diametef, = 15mm and thickness = 5mm (Fig. 8.1). Such
a configuration is present, for instance, in automobile aghaipes ?), segmented
solid rocket motors (SRMs)?f and gas transport systenf®?]. The pressure-driven
flow, after passing through a moisture separator and a roéariesed to measure the
incoming flow rates), enters the pipe through an upstreamdiytal chamber of length

L. = 300mm and diameted,. = 300mm.

A region of strong velocity gradients (shear layer) formghatleading edge of the
orifice and rolls up into a vortex sheet that convects dowastr. It has previosuly
been conjectured that the separated shear flow producesdfiiaets in the effective
aerodynamic orifice area due to the growth and periodic shgaddf vortices from the
orifice side walls ?). These area fluctuations in turn produce variations in thegure
drop across the orifice?. When the frequency of these variations matches one of the
acoustic modes of the pipe-orifice combination, self-sosthpipe tones or whistling
is established. Later studies have further proposed thethmyg is established when

the separation streamline from the leading edge of the erifipinges on the trailing
edge ?).

Experimental measurements were performed by systemgtinateasingrin from
0.60g/s to 0.92¢/s in steps 0f0.02¢g/s and then decreasing back @d0g/s, where
m is the mass flow rate of air through the duct-orifice systeme Rbynolds number,
which serves as the non-dimensional control parametegfiisetl aske = 4/ (wd,p),
whereu = 1.85 x 107°Pa.s is the dynamic viscosity of air at the ambient condition of

26°C andlatm. The variation inRe was in the rang&.75 x 10° — 4.22 x 103 with
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Figure 8.1: Schematic of the experimental setup used inrdsept study. The pipe has
a length = 600mm and diameteD = 50mm terminated by a circular
orifice of diameterd, = 15mm and thicknesg = 5mm. Air enters the
upstream cylindrical chamber, of lengith = 300mm and diameteti, =
300mm, through the opening in the left.

a measurement uncertainty 7%. The pressure fluctuations generated by turbulence
(pseudo-sound) decays much faster than the radiated seloshddwnstream of the ori-
fice (??). Hence, pressure measurements were acquired with a ieerddcate®@mm

to the right of the trailing edge of the orifice, a location wthe levels of the turbulent
pressure field were above the noise threshold of the traps@kig. 8.1). A total of 33
pressure measurements were performed; each pressureremasticorresponds to an
acquisition for a duration of0s at a sampling frequendy, of 10k H = using a free-field
microphone. Though the microphone has a resolutia?00f: Pa, measuring the elec-
trical noise prior to the experiments revealed that presBuctuations below 0.09 Pa
are not well resolved. To obtain the amplitude of presgued various frequencies, a
Fast Fourier Transform (FFT) was performed on the presgueederies with a spectral

bin size ofAf = 0.08H 2.

8.3 Results

Figure 8.2 presents the results from an experiment in wiielReynolds number was
increased fronRe; = 2.75 x 103 to Re, = 4.22 x 10% in steps ofA Re = 0.09 x 103, At
eachRe, the flow was allowed to settle f6x before pressure measurements were made.
The frequency content of the 14 signals obtainedRer < 4.04 x 10® (Fig. 8.2(a))
reveal the presence of a broad peak centered around a ddrfregurencyf; that re-
mains almost invariantf{ = 537H z with a variation within1 H z) on increasingRe.

The invariance suggests thAtis one of the natural acoustic frequencies of the duct-
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orifice system rather than a flow frequency. The broad prafildse spectra shown in
Fig. 8.2(a) indicate a pressure signal dominated by turtméleand a typical time sig-
nal acquired afze = 2.75 x 10? (Fig. 8.3(a)) does display an aperiodic behaviour. A
secondary shallow peak centered aroypnd= 217H z is also visible in the spectra for
Re < 4.04 x 10? and it gradually bifurcates into two de is increased (Fig. 8.2(a)).
Such pairs of peaks in the spectra have previously been stosignify the proximity

of the operating conditions to a period doubling bifurcat{).

(@)

0 f(Hz) 0 f(H2)

Figure 8.2: (a) Plots of the spectra (P vs. f) computed froenpitessure time series for
variousRe prior to the onset of whistlingKe < 4.04 x 10%). (b) Plots of
the spectra fofe € [2.75 — 4.22] x 103. The arrows indicate the direction
of change ofRe in the experiment.

For relatively largeRe (Re = 3.85 x 102, for example), the pressure time series dis-
plays bursts of periodic oscillations (of frequengty that appear in an almost random
manner amidst aperiodic fluctuations (Fig. 8.3(b)). Theaye duration of these peri-
odic bursts increases with an increaséi leading to the increased spectral content at
f1 as seenin Fig. 8.2(a). Spatially localized puffs of turbakewith a finite lifetime are
often observed in pipe flows prior to the critical transittorturbulence ??). In our ex-
periments, we observe the converse scenario, with inteEmmipuffs of time-localized

periodic oscillations forming in a background of turbul@nttuations.

Figure 8.2(b) shows the amplitude spectra for all the 17 anesmeasurements,
spanningRe; = 2.75x 10% to Re, = 4.22 x 103, While the spectra foRe < 4.04 x 103
contain broad peaks arourfdand f,, the pressure fluctuations f&e > 4.04 x 102 are
more coherent with sharp peaks of significantly higher atugdis in the spectra (termed
tones); a typical times series obtainedzat= 4.22 x 10? is shown in Fig. 8.3(d). This

transition in the spectra occurs At = 4.04 x 103, wherein the dynamics undergoes a
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bifurcation from a low-amplitude intermittent regime tayhiamplitude self-sustained
periodic oscillations (Fig. 8.3(c)). The sudden rise in &tades and the sharpening
of the spectra signify the onset of whistling, with the twardpant frequencies dur-
ing whistling related byf; = 2f, = 434H z, resulting in period-2 oscillations. In the
whistling regime, while the spectral contentfatis very small, the dominant frequen-
cies f, and f3 increase linearly withkRe. We further note that the flow is still turbulent

during whistling although the dynamics is dominated by qaid pressure fluctuations.
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Figure 8.3: Dynamics of the transition for increasing Rdgismumber Re): (a) ape-
riodic fluctuations Re = 2.75 x 103), (b) intermittent bursts Re =
3.85 x 10%), (c) transition to periodic oscillationge = 4.04 x 10%), and (d)
ordered period-2 oscillationg?¢ = 4.22 x 10?). (e) 7,, the time spent by
the dynamics in the periodic state over a 0.5s durationtqaas a function
of Re along the forward and reverse paths. (f) The r.m.s. valueedgure
fluctuations/,,,.) plotted as a function ake along the forward and reverse

paths. The bistable regime Re lies between the two vertical dashed lines.
Three bursts of varying duration are shown using horizataws in (b).

For a fixedRe, the time spent by the dynamics in the periodic regime wagcoed
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by tracking the repeating patterns in the pressure flucinstfter delay embedding the
data onto a suitable mathematical phase space (of dimedgien8 and embedding
delayr,,, = 0.4ms) (Marwanet al,, 2007; Abarbaneét al,, 1993). The first 9 seconds
of the signals were divided into segmentsTgf = 0.5s duration and two points in
the phase space are treated as recurrent when the distanezbehem is less than a
fixed threshold, = 2.5Pa, which roughly corresponds to a pressure amplitgteof
eo/+/n = 0.9Pa when the signal is embedded in eight dimensions. This tbidsiy
generates a binary recurrence matfly which has a value of one when the distance
between pointsand; in the phase space exceegsnd a value of zero otherwise. The
time sparil” = 0.5s is much higher than the largest dominant time period of zamhs
during whistling ([ ~ 4.6ms). The average duration of the time spent in the periodic

state in a segmenmts then computed as:

13N vP(v)
e el 2 i=1,2,..,18. 8.1
PRI P T T ey

whereP(v) is the probability distribution of stringsof consecutivé s in the recurrence
matrix R;;, for a time series comprisiny = 5000 data points sampled at a frequency
F,. The mean time spent in the periodic stgtés then computed as the averagerpf
over 18 such segments. A value®qf= 0.5s corresponds to the dynamics spending
all the time in the periodic state. ARe is increased, i.e. along the forward path, the
trajectory in phase space repeats itself more often andeqoesitly the duration of time
spent in the periodic state increases frosto 0.5s (Fig. 8.3(e)), as the duration of an

individual periodic burst increases on the average.

The periodic oscillations represent a state of hydrodynaamoustic lock-in. Shown
in Fig. 8.3(f) is the variation of the r.m.s. valgé, . of the pressure time series (ob-
tained overl0s) as a function ofze from the two experiments in whicRe was varied
from Re; = 2.75 x 10° to Re, = 4.22 x 10® (forward path) and then back from
Res = 4.22 x 103 to Re; = 2.75 x 10? (reverse path), respectively. The transition to
self-sustained whistling is subcritical: as shown in Fig(8, along the reverse path,
the periodic oscillations (whistling) persist unfie = 3.67 x 103, for which we ob-
served intermittent fluctuations along the forward pathe Wipper branch in the bistable
regime of Fig. 8.3(f) corresponds to the periodic statek wéquencieg; and f; in the

spectra and the lower branch corresponds to the interrnlitest states with a domi-
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nant frequencyf; in the spectra. The hysteresis is also visible in the plat,ofs. Re
(Fig. 8.3(e)).

A theoretical model based on 1D linear acoustics is con&duby linking the
plenum, duct and the orifice as three network elements sepaby junctions that
satisfy the interface conditions (pressure continuity arass flow conservation).
Both the plenum left end and the orifice right end are acoai$fiopen. The effects
of mean flow and mean density variations are negligible asrthe@mum mean flow
velocity (up = 4.4m/s) is much smaller than the speed of soungd+€ 346.6m/s) in
air at the operating conditions. Assuming a harmonic viarigbr the acoustic pressure

perturbations, the acoustic pressure and velocity fluctgaimay be represented as:

p/ — %[eiwt(Aeikx—l—Be_ikx)], (82)
v o= R [ (Ae™ — Be ™) [poco] (8.3)

wherek = w/cq is the wavenumber ari denotes the real part. With the origin of the
coordinate systemz(= 0) fixed at the duct-plenum junction, and taking the direction
of mean flow to be the positive x-axis, the boundary condgioray be expressed in

matrix form as:

11 -1 -1 0 0 A,

S, -8, —S; S 0 0 B,

e tkle  gikLe 0 0 0 0 Ay
, , , =0 (8.4)

0 0 eikl e—ikL —e L ik B,

0 0 Syeikl _ Gkl _G e=ikL g o=ikL A,

0 0 0 0 ez’k(L—i—t) e_z‘k(L+t) B,

where the subscripis d ando refer to the plenum, duct and orifice respectively, &pd
Sq and S, are the corresponding areas of cross-section. By settengaterminant of
the matrix equal to zero, a non-trivial solution is foundfat 533 H = which compares

well with the frequencyf; observed prior to the transition to whistling. The frequenc
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f1 arises due to the presence of the plenum, as removing therplelement from the
theoretical analysis removed the frequerf¢y No solution, however, was found near

f2 or f3 with this arrangement.

Based on the mechanism conjecture@,iimstability is established when the shear
layer reattaches at the trailing edge of the orifice. Thisukhproduce a recirculating
vortex bubble on the orifice with a circulation time given tafiorder byl = 2t/uy,
whereu, is the mean flow velocity through the orifice. The value of tregfiency
associated with this circulation at the transitiia (= 4.13 x 10%)is f, = 1/T,. =
428.6 H z, which is in good agreement with the frequerfgybtained from experiments.
The transitionRe is defined as thdie at and above which low amplitude pressure

fluctuations are not possible in the forward path experiment

The mechanism also provides further insight on why the feegiesf, and f; are
absent in the linear acoustic analysis prior to whistlingrnfkation of the vortex bubble
at the orifice can acoustically close the right end of theagiioundary since the effec-
tive area for the flow to pass through is reduced. Imposingsecl boundary condition
at the orifice exit and performing the linear acoustic analys non-trivial solution is
obtained atf = 435H = which is close to the dominant frequengyobserved during
whistling. This also explains why the frequengyis not obtained once whistling is
established. Increasing thiee (or u,) further would require temporal adjustment of
the boundary conditions (acoustic pressure drop acrossrifiee) such that the flow-
acoustic lock-in is maintained. Flow visualization expeents performed b¥? have
revealed vortex coalescence downstream of the orifice floows orifice parameters.
The subharmonic frequendy, and the observation of period-2 oscillations at whistling
hence occur when two vortices with frequencfggoalesce downstream of the orifice,

forming a bigger vortex with an associated frequeficy- f3/2.

The multifractal spectrum which was broad prior to trawsitcollapses to a growth
rate near O after the transition (Fig. 8.4(a)). In other wgoithe relevant time scales
that dictate the physics of the problem become fewer in numbée loss of mul-
tifractality can also be used as a precursor to an impendiatability. Shown in
Fig. 8.4(b) is the variation of Hurst exponeft (or H,) of the pressure fluctuations
over a range of Reynolds number varying from conditions famfwhistling to con-

ditions of self-sustained oscillations. The Hurst expdrdrops smoothly across this
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Figure 8.4: Characterizing the onset of self-sustainedlasons. (a) The multifrac-
tal spectrum acquired for the fir8s of the data overlaid on the spectrum
estimated for the data fromh— 10s after the onset. (b) Variation of Hurst
exponentHd with Re along the forward path.

range of Reynolds number. This smooth decline in the divergeates is due to the
presence of a regime of Reynolds number characterized bymittent bursts in the
signal. The density of such periodic ‘puffs’ in the signal &fixed time period of mea-
surement increases as the mean flow velocities approacitioosaf whistling and the

Hurst exponents are an alternate measure of this density.

8.4 Concluding remarks

The results from this chapter show that intermittency isigersal feature that presages
self-sustained flow-induced oscillations in a number otays, and not just in pres-
sure measurements of turbulent flow through combustors wvitteady heat release.
The nature of the problem requires that the effects of flowulemce be incorporated
appropriately in models of flow-sound interaction and nat jgnored as background
perturbations to the underlying dynamics, as is currerftgrodone. Finally, the study
shows that quantities like the Hurst exponent are univensitators of the proximity
of a system to self-sustained oscillations no matter whaisthurce of the underlying

dynamics is.
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CHAPTER 9

Conclusions and outlook

The present thesis focussed on characterizing the varynentical states underlying
the transitions observed in a laboratory-scale combugterating in a turbulent flow-
field from regimes of stable operation towards large amgéitaombustion instability.
It was identified that combustion noise is deterministicashand that the transition
towards combustion instability is preceded by a regime t&frimittent bursts composed
of large-amplitude pressure oscillations that emerge ieaa-nrandom manner from the

background of low-amplitude, chaotic pressure fluctuation

A mechanism was proposed, which necessitates the existésgeh an intermittent
regime prior to the onset of combustion instability, pra@ddhe underlying flow-field
is turbulent. A phenomenological model was described ugilsymechanism which
was able to qualitatively reproduce the intermittency obesein experiments. Further,
a host of precursors were also obtained by quantifying thieeemittent states that can

act as early warning signals to combustion instability ifdie combustors.

Traditional linear techniques that rely on a ‘signal plussebparadigm was found
to be insufficient to characterize the intermittent and ticatates observed in the com-
bustor, or predict the onset of an instability. The compilerf the dynamics requires
that one employ fractal measures to describe the scalingesfetirregular pressure
fluctuations. It was found that combustion noise is multifad, with different scaling
properties for different amplitudes. Further, the onsanhsfability results in a loss of
this multifractality, which in turn can be utilized as yetahner early warning measure

to combustion instability.

It is shown that the intermittency is due to the establishm&homoclinic orbits in
the phase space of the underlying attractor. Such orbitsezdrthe periodic and aperi-
odic portions in phase space resulting in burst oscillatidrne intermittent regime was
also found to be a characteristic of the pressure signats fariean blowout. Analysis

of the high speed flame images reveal aperiodic detachmenteattachment of the



flame from the bluff-body lip. The detachment leads to a drojpé pressure amplitude

and aperiodicity and reattachment results in the er-astabent of periodicity.

Intermittency was seen to be a characteristic feature idiroaoh turbulent flow-
fields, even in the absence of combustion. Measured prefisateations of an un-
steady flow-field through a pipe across an orifice revealsdhadtion of intermittent
burst oscillations prior to the transition to pipe tonesiétling). The mechanism was
identified as the closing of the boundary condition resglimthe formation of period-2

oscillations at the onset of whistling.

Precursors could be defined only because there was a regimewhittent burst
oscillations that presaged an instability. It would, tHiere be interesting to explore the
validity of the proposed mechanism for a variety of fluid sys$ and machines that
operate in a turbulent flow-field. It would also be interegtin test whether such in-
termittent states can be observed in systems with a lammasfikld; for instance, in
ducted laminar premixed or diffusion flames and electrigg{eRiubes with a laminar
flow-field. A possible study could then further entail projpgsprecursors in such lam-
inar systems and identifying universal features undeghanransition to combustion

instability.
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APPENDIX A

Validation of phase space reconstruction

In this chapter, a simple three dimensional model is intoedy that displays chaotic
behaviour for certain parameter values and initial condgi The techniques that are
used to reconstruct the phase space and determine thegeesamaos in the combus-
tor time trace are then applied to the time traces obtairmd this model to illustrate

and validate the applicability of the techniques.

A.1 Lorenz system

The Lorenz system comprises a set of three nonlinear ordulifferential equations
that were developed by Edward Lorenz as a simple model foosheric convection.
The equations describe fluid circulation in a shallow layaral is heated from below

and cooled above and in its simplest form may be written as:

t=o(y— 2), (A.1a)
y=—xz+1rr—UY, (A.1b)
Z=uxy— bz (A.1lc)

whereo, r andb are three constant parameters. Shown in Fig. A.1 is the tariation

of the 3 variables and the evolution of the variables in adltienensional phase space
for the following choice of the parameters:= 10, » = 28 andb = 8/3. It is seen that
the fluctuations in the three dynamical variables displahlyi erratic behaviour with
no apparent periodicity. The evolution in phase space slaopattern which consists
of two loops formed by the evolution of the trajectory arouna fixed points. The
trajectory remains bounded as variationg jiy andz remain within certain fixed limits

determined by the constant parameters. The boundednesbeangeriodicity satisfy
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Figure A.1: (a) The evolution of the variables y and z of the Lorenz system. The
parameter values are= 10, r = 28 andb = 8/3 with the initial condition
chosen as, = 0.1, yo = 0, andzy = 0. (b) The evolution of the trajectory
starting at the prescribed initial condition in a phase sgamsisting of the
three variables. It has a characteristic shape more pdpklaown as the
'Lorenz butterfly’.

two out of the three requirements which the trajectory ofwhgables must satisfy in

order to be termed chaotic.

A third additional requirement for chaos is the sensitivpatelence of the trajecto-

ries on the initial conditions. For a chaotic system, neardjgctories diverge exponen-
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tially even when they are separated by an infinitesimal sgjoar initially. Figure A.2
shows the evolution of the variableas describe by the Lorenz system starting from

two slightly different initial conditionsz; = 0.1, 2o, = 0.100001.
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Figure A.2: An illustration of the sensitive dependencehs trajectory on the initial
condition. (a) The evolution of the dynamical variablstarting from two
slightly different initial conditions;zo; = 0.1 (black), zo; = 0.100001
(gray). (b)The corresponding trajectories in phase space.

As in evident from Fig. A.2, the trajectories are indistirghable initially; how-
ever, they gradually diverge and two separate signals aiel@iin the time evolution.

Correspondingly, two separate trajectories are visibteéphase space.

A.2 Results on phase space reconstruction

The technique of phase space reconstruction outlined ipten& was applied to the
time series data of obtained from the Lorenz attractor with the following iaitcon-
dition g = 0.1, yg = 0, zg = 0. The time step was chosen as = 0.01 and data was
acquired for 25000 time steps. The first 5000 points were veahérom the analysis to
account for the transients. Shown in FRf(a, b) are the average mutual information
and the variabld’; for the x variable. Based on the saturationfof, we can conclude

that the data comes out of a three dimensional system anththaptimal time delay is
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Tpt = 18 time steps. The reconstructed phase space is shown iA%@. We see that
the topological features of the original attractor suchhasdouble loop are reproduced
in the reconstructed phase space as well. This validatgsrtmsed methodology to
reconstruct the attractor of combustion dynamics from glsimeasured pressure time

trace.
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Figure A.3: (a) The variation of the average mutual inforioratwith the number of
time steps. (b) The variation of the measurfg with the dimension of the

attractor. (c) The phase space reconstructed using therdgnariablex
through delay embedding.
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APPENDIX B

Evaluation of Hurst exponents and the multifractal

spectrum

To estimate the Hurst exponent using detrended fluctuatiatysis (DFA), the time
signalp(t) of length V is first mean-adjusted and then a cumulative deviate sgfies

(see Fig. B.1)is obtained as:

v =2 (0(t) = m) (B8.1)
where
m= % ép(t) (82
Iy il |' | ' 1 il Ll o )|
i ,,,1)’1 o g *l“l,"r ,,u“‘ Ll g . rll); UHN l].m‘ Iw"' | i

White noise

i ik rp’WMMMMWMWWWWWWWM vy i “

0 1 000 2000 3 000 4 000 5000 6 000 7 000 8 000
N
Figure B.1: A portion of the time signal (gray) and its cumaldeviate series (black)
for (a) combustion noise and (b) a monofractal time seried (@) Gaussian
white noise. The monoftactal time series is persistent withoticeable

trend whereas combustion noise is anti-persistent witbdeoy towards
mean reversion.

The deviate series is then divided into a numbgrof non-overlapping segments

(ys(t), i=1,...,n,)of equal spanv. Shown in Fig. B.2 is a part of the combustion



noise signal which has been split into non-overlapping .biimsorder to remove the
trends in these segments, a local lineag{fis made separately to each of the sections
of the deviate serieg. These linear fits are shown as dashed lines in Fig. B.2. The de
trended fluctuations are then obtained by subtracting thapmial fit from the deviate

series.

The structure function of orderand spanw, £? can be obtained from the detrended

fluctuations as:

q\ 1/q
w

1 1 _
Fi=1—> | \|=D () —m)? (B.3)
i=1 w t=1
The Hurst exponenti? is then obtained from the slope of the linear regime in a

log-log plot of F2 for various span sizes. Forg = 0, the structure function is defined

as (?):

Fyy = exp (% Zw: log (% > (wilt) - E)2>> (B.4)

t=1

The generalized Hurst exponeri& are the slopes of the straight lines in a log-
log plot of the structure functions for various order expuse for variations in the
segment width (time interval)y. The information contained i#/? for differentq can
alternatively be represented as a spectrum of singulsifitie) that are related to the

slopes of the generalized Hurst exponents via a Legendrsftnan as follows:

T, =qH?—1, (B.5a)
07y

a = e (B.5b)

fla) =qa -1, (B.5¢)

This spectrum, represented as a plof ¢f) againsty, is known as the multifractal
spectrum (also called the Holder spectrum) and providesnmdtion on varying nature

of the fractal dimension in the data.

98



1200 1600 2000 N 2400 2800 3200

Figure B.2: The cumulative deviate series and its linean 0 segments from a portion
of the combustion noise signal. The deviate seyiés is shown in gray
and the linear fity; and its local standard deviation are shown as black
dashed lines.
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